

Original Article

Production and Optimization of Lipase from *Bacillus Subtilis*

K. Kanimozhi¹, E.G.Wesely Jebasingh Devairrakam ², D.Jegadeeshkumar³

¹Dept. of Biotech, Bharathiyar university Coimbatore, Tamil Nadu, India.

²Dept of Botany, Arignar Anna Arts and Science College, Namakkal, Tamil Nadu, India.

³Chromopark Research Centre, Namakkal, Tamil Nadu, India.

Received: 15.6.2011; Revised: 18.07.2011; Accepted: 30.09.2011; Published: 15.12.2011.

Abstract

In this study, the lipolytic *Bacillus subtilis* was isolated from the oil mill waste by enrichment techniques. The isolated colonies were screened on Olive oil medium, colonies which produce the maximum zone of the particular organisms was used for further optimization studies. Among the 5 *Bacillus subtilis* isolates a single isolate was subjected to submerged fermentation medium and the enzyme characteristics were studied with respect to substrate, temperature and pH. The production of lipase is significantly influenced by carbon sources such as Olive oil, Castor oil, Gingelly oil, Palm oil, and Sunflower oil at different temperature range. The maximum lipase activity was reached by the *Bacillus* at 37°C and pH 7 where its production reached upto 0.01033 and 0.01066 µg/ml/min. Among the different substrate the maximum activity was observed in Gingelly oil (0.01066 µg/ml/min) at pH 7 and temperature 37°C. Degradation of oil waste by the crude enzyme extract and bacterial suspension were compared. The crude enzyme extract liberate more fatty acid (10.95 64%) compared to *Bacillus* isolates (8.42 40%). From the study it was concluded that the commercially important enzyme can be produced by submerged fermentation techniques using frequently available edible oil sources it can be used for the biodegradation of oil effluents.

Keywords: *Bacillus subtilis*, Lipase, pH, Temperature, substrate

Introduction

Lipase (Tri acyl glycerol acylhydrolase E.C.3.1.1.3) is a class of hydrolases catalyzes the hydrolysis of triglycerides to monoglycerides, diglycerides, free fatty acids and glycerol. But these reactions are reversible. It possesses characteristic properties like substrate specificity, stereospecificity and the ability to catalyze heterogeneous reactions at the interface of water soluble and water insoluble systems (Shah *et al.*, 2007). Lipase enzymes have been found in many species of animals, plants, and microorganisms. In particular lipases from fungi are important in industrial used for biotechnological application in dairy industry, oil processing, and production of surfactants (Bapiraju *et al.*, 2004). Microbial

lipases are preferred potent sources due to several industrial potential. The world market for lipase has been estimated at approximately US\$ 20 million of the industrial enzymes market (Rahman, *et al.*, 2005).

Environmental pollution is one of the major problems facing the industrialized world today. The need to remediate these sites has led to the development of new technologies that emphasize on the detoxification and destruction of the contaminants rather than the conventional approach of disposal. Bioremediation, the use of microorganisms or microbial process to detoxify and degrade environmental contaminants is among these new technologies. Different microbes producing lipase are used for the remediation process (Chuks Ugochukwu, *et al.*, 2008).

The exponential increase in the application of lipase in various fields in the last few decades demands extension in both qualitative improvement and quantitative enhancement. Quantitative enhancement requires medium optimization with pH, Temperature and different medium composition. The high cost of

Address for corresponding Author

K. Kanimozhi,
23, Kulathu Kadu, 4th street,
Agraharam (post), Pallipalayam,
Erode - 638 008, Tamilnadu.
E-mail: kanibio@rediffmail.com,
Mobile: + 91 9585008730.

lipase, however, makes enzymatically driven process economically unattractive. The use of medium optimization is a possible solution to this problem because the enzyme can be recovered with easy and quality so this simple method provides a reliable and efficient technology (Bapiraju *et al.*, 2004).

The aim of research is to assess the relative abilities of microbes isolated from crude oil polluted soil to degraded crude oil hydrocarbons, to assay and possibly determine some kinetic parameters of crude lipase extract from the microbial isolates.

Materials and Methods

Sample Collection and Enrichment

Soil samples were taken from the oil mill surroundings area in Namakkal. Totally 15 samples (5 g each) were collected and transported in plastic bags to the laboratory. One gram of sample was suspended in 10ml of sterile normal saline. After shaking, 5ml of the suspension was transferred into conical flask containing 50 ml of enrichment medium (Olive oil 0.5%, yeast extract 0.1%, NaCl 0.2%, MgSO₄ 0.04%, CaCl₂·2H₂O 0.05%, KH₂PO₄ 0.03%, K₂HPO₄ 0.03%, (NH₄)₂SO₄ 0.05%, pH 7). The culture was incubated at 37°C under shaking (150rpm) condition for 48 hours. The soil samples were aseptically subjected to serial dilutions and plated on nutrient agar and incubated the plate at 37°C for 24 hrs. After incubation, bacterial species were isolated and subjected to morphological, cultural and biochemical examination by Cheesbrough, (2004) method.

Screening of Lipase Producing Isolates

The isolated bacteria were subjected to screening. The plate medium containing (gm/L): beef extract 3.0, peptone 5.0, sodium chloride 5.0, agar 15.0, calcium chloride 0.05 and glycerol tributyrate 0.2 mL, after incubation for 24 h observe clear zone around colonies. Which showed maximum activity was selected and maintained on tributyrin agar slant for further studies (Chatravedi *et al.*, 2010).

Production of Lipase

The production media was prepared in 100ml of Erlenmeyer flask containing 50ml of nutrient broth and 1% olive oil as substrate. The medium was sterilized autoclaving at 121°C for 20 minutes and then it was inoculated with 1ml of bacterial suspension and incubated at 37°C for 48 hours.

Production of Lipase with Different Parameters

The activity of lipase producing *Bacillus subtilis* was assayed with different substrates, olive oil, castor oil, gin gelly oil, palm oil, and sun flower oil at different temperature and pH.

Enzyme Extraction

From the production media, 5ml of the sample was taken and centrifuged at 10,000 rpm for 10 minutes. The supernatant was collected separately and the enzyme mixture was stored at 4°C for further studies.

Determination of Enzyme Activity by Emulsified Free System Method (Sadasivam and Manikam, 1996)

250 ml of Erlenmeyer flask containing 2ml of 0.1M of phosphorus buffer, 1 ml of olive oil and 1ml of crude enzyme extract was incubated at 40°C for 30 minutes. The reaction was stopped by the addition of 5ml of ethanol and it was titrated against 0.1N NaOH using phenolphthalein as indicator. The appearance of pale pink color was the end point. The same method was used for all the samples to determine the lipase activity.

Lipase activity was calculated using the following formula

$$\text{Lipase activity} = \frac{\text{Volume of alkali consumed} \times \text{Normality of NaOH}}{\text{Time of incubation} \times \text{Volume of enzyme solution}}$$

Degradation of Crude oil on Oil Effluents

10g of oil mill waste was taken in 3 different conical flask labeled as control, enzyme extract with oil mill waste and bacterial suspension with oil mill waste. All the flasks were incubated at 37 °C for 1 hour. The oil in each sample was extracted using soxhlet apparatus. To these samples 50ml of spirit, 2-4 drops of 0.1N NaOH and 2 drops of phenolphthalein indicator was added. The extracted oil from waste material was titrated against 0.1N NaOH in the burette. Appearance of pale pink colour is the end point (Sadasivam and Manikam, 1996).

$$\text{Volume of alkali consumed} \times \text{Constant Value (0.02825)}$$

$$\% \text{ of free fatty acid in sample} = \frac{\text{Volume of alkali consumed} \times \text{Constant Value (0.02825)}}{\text{Sample weight}} \times 100$$

Results

The bacterial strain was isolated and identified as *Bacillus subtilis* based on the morphological characters and biochemical characters. A total of 5 isolates were obtained out of 15 samples. By performing qualitative assay of *Bacillus subtilis* and tributyrin were used for the screening of lipase producers. The presence of clear zone was indicated as lipase producers. Among the five isolates, the single isolate producing colonies exhibit the maximum zone of clearance (16mm) this isolate was used for further studies (Plate-1). The results were represented in table-1.

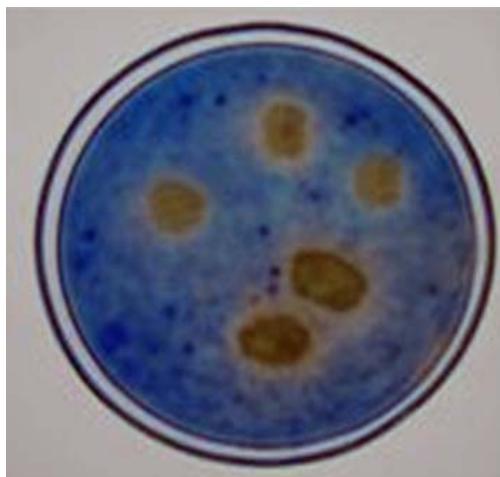


Plate-1: Lipase Production of *Bacillus* sp

Table - 1: Zone formation of *Bacillus* sp

S.No	Isolates	Zone Of Clearance In Diameter
1.	Bacterial isolate-1	9
2.	Bacterial isolate-2	6
3.	Bacterial isolate-3	16
4.	Bacterial isolate-4	12
5.	Bacterial isolate-5	8

Lipase Production with different Parameters

Microbial enzyme production was checked with various factors like temperature, pH, and the nature of substrates. The various results that were obtained during the optimization of these process parameters were as follows:

Effect of different substrates

The best substrate for the lipase production was found to be the gingelly oil where its productivity reached upto 0.01066 μ g/ml/min.

The Palm oil and Sunflower oil were found to be the next most substrates where its production reached upto 0.01033 and 0.01 μ g/ml/min. The maximum activity was observed at 37 °C and pH 7. The results were seen in figure-1.

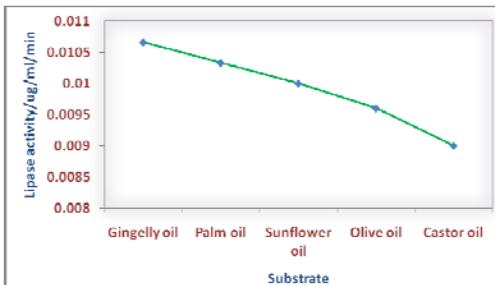


Fig.1: Effect of different substrate on Lipase production of *Bacillus* sp

Effect of Temperature

The production of lipase was greatly induced by the temperature. The maximum lipase activity was reached by the *Bacillus* species at 37°C and pH 7 where its production reached upto 0.01033 and 0.01066 μ g/ml/min. The other temperatures such as at 27°C, 47°C and 57°C were also seen to induce the less amount of lipase production. The results were seen in figure -2.

Fig.2: Effect of different Temperature on Lipase production of *Bacillus* sp

Effect of pH:

The organisms at various pH such as 4, 5, 6, 7 and 8 showed different lipase activity on different substrates at 37°C. The maximum lipase activity was observed at pH 7, and it was calculated as 0.01066 μ g/ml in Gingelly oil. Other substrates such as Palm oil, Sunflower oil, Olive oil and Castor oil were also seen to induce the less amount of lipase production. The results were seen in figure -3.

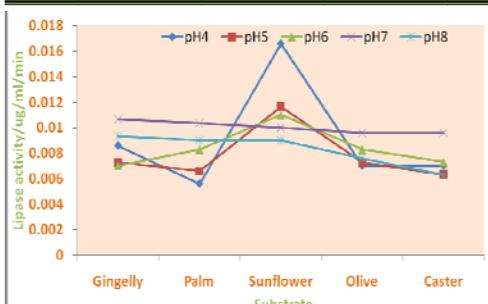


Fig.3: Effect of different pH on Lipase production of *Bacillus* sp

Activity of Lipase on Oil Effluents

The extracted lipase enzyme has the ability to liberate free fatty acid. Compared to control (6.72%), the test samples with crude enzyme release free fatty acid in higher level. It was found to be 10.85%. Compare to test sample with crude enzyme, the bacterial suspension with sample release free fatty acid in lower level. It was found to be 8.41% so it was conclude as the maximum degradation take place only in crude enzyme extract comparatively others. The results were observed in table 2.

Discussion

Lipases are extremely versatile enzyme, showing many interesting properties of industrial applications. Microbial lipases are high in demand due to their specificity of reaction, stereo specificity and less energy consumption than conventional method. In the recent years, the interest on lipase has grown significantly. The development of technologies using lipase for synthesis of novel components will result in this expansion in to new area and increasing number of industrial application (Bjorling *et al.*, 1991). In the present studies, the lipase producing organism where isolated from oil mill waste and identified as *Bacillus subtilis*. Among the three isolates the most potent in secreting lipase was screened as isolate '3'.

Effect of Different Substrates

The production of lipase is significantly influenced by carbon sources such as Gingelly oil, Palm oil, Sunflower oil, Olive oil and Caster oil, temperature and pH were tested. Among five different substrates the Gingelly oil showed the maximum activity (0.0106 $\mu\text{g}/\text{ml}/\text{min}$), compare to other substrate. This result was not accordance with the report of Selva Mohan (2008), who reported that maximum lipase activity was

observed in Olive oil and its activity was screened (0.0039 $\mu\text{g}/\text{ml}/\text{min}$). Lakshmi *et al.*, (1999) reported that the production of lipase was high in medium added with vegetable oil than the medium added with glucose. In contradiction Banerjee *et al.*, (1985) reported that some microorganisms showed higher activities when grown in medium containing glucose, Novotny *et al.*, 1988 reported that Olive oil in combination with glucose increased lipase activity and in most cases and also the presence of Olive oil, together with glucose or glycerol in the medium significantly decreased both lipase and esterase levels. They also further inferred that, if Olive oil was used as the only carbon sources for growth, the enzyme activities of *Candida guilliermondii* showed a four to five fold increases. As reported by Nakashima *et al.*, 1998 the presence of Olive oil as growth medium greatly enhanced in the lipase activity of *Bacillus* strain 5 (B3) in the present study. Fadinoglu *et al.*, (1999) reported that Olive oil combination with other nitrogen sources enhanced the lipase production, but the presence of the carbon sources in the Olive oil significantly ($P < 0.01$) decreases the lipase activity and biomass content. They also reported that organic nitrogen sources were found to be increased lipase synthesis by *Candida rugosa* grown in the presence of Olive oil.

Effect of Different Temperature

Rohit *et al.*, (2001) reported that the lipase production was more in vegetable oil, Olive oil; Soy oil, Gingelly oil and Sunflower oil were used as the carbon sources. In the present study the influence of medium temperature indicated with lipase production by the isolated organism was higher 0.01033 to 0.01066 $\mu\text{g}/\text{ml}/\text{min}$ at 37°C when compared to other degrees. In the argument to the presence result Selva Mohan *et al.*, 2008 found at optimum temperature for lipase production by *bacillus* spp. at 37°C. Similarly Walaivalkar and Bapal, 2002 have reported that, the lipase activity of *Staphylococcus* spp. was high at 37°C.

Effect of Different pH

The pH of the culture medium plays a critical role for the optimal physiological performances of the bacterial cell and the transport of various nutrient components across the cell membrane aiming at maximizing the enzyme yields. Concerning lipase production in this study it has been found that the yield was reached its maximum at pH7, compare to the

other pH ranges. The result was in co nsistence with e arlier report (Achamman *et al.*, 200 3). They interred that the lipase activity of *Bacillus* *sps* was maximum at pH 7. The st udy M annuel Ferrer *et al.*, 2000 reported that the optimum pH ranges for l ipase pro duction at pH7 b y *Penicillium chrysogenum*.

Activity of Lipase on Oil Effluents

Degradation of crude oil by the isolates in the enzyme extract was studied. The cured oil with e nzyme ex tract showed the maximum degradation when c ompare to c ured oil w ith bacterial isolates. This study suggested that when the ca talytic agent was in close proximity w ith the sub strate the rate of re action will be higher. Since t he same enz yme c atalyze the initial degradation of both the growth and non growth substrates, competition for the enzyme can occur, reducing the rate of growth substrate degradation (Subhas and Robert, 1998). The results have also shown tha t the reduc tion in t he r ate o f non growth substrate de gradation can occ ur i n the presents of gr owth substrate (Gill and Robothan 1989).

References

Achamman, T., Monoj, M. K., Valsa, A., Mohan, S. and Manjula, R. 2003. Optimization of growth condition for the pr oduction of e xtra ce llular lipase b y *Bacillus mycoides*. *Ind. J. Microbiol.*, 43: 67 – 69.

Banerjee, M., Sengputa, I., and Majumdar, S.K. 1985 “Lipase Production by *Hansenula anomala* var. Schnegii”, *J. Food Sci. Technol.*, 22:137-139.

Bapiraju, K .V.V.S.N., Sujatha, P ., Ell aiah, P ., and Raman a, T. 2 004. M utation induced enhanced biosynthesis of lipase. *Afr. J. of Biot.*, 3 : 618-621.

Bjorkling, F ., G odtfredson, S. E. and K irk, O . 1991. Th e future i mpact o f industrial lipases. *Trends in Biotechnology*, 9: 360-363.

Chatravedi, M., Singh, M.,Chugh, R., and Pandy, S. 2010. Lipase Production from *Bacillus subtilis* MTCC 6 808 by solid sta te fermentation using Ground Nut Oil Ca kes as Substrate. *Res. J. of Microbiology*,5:725-730.

Cheesbrough, M . 2004. M orphology and characterization of *E. coli* and *S. aureus*. District Laboratory practice in tropical countries part II. Cambridge University. 157-179.

Chuks U gochukwu, K ., Agha, N . C ., and Ogbulie, J. N . 200 8. Li pase ac tivities o f microbial isolates from so il con taminated w ith crude oi l after bi oremediation. *Afri. J. of Biotech.*,7 : 2881-2884.

Fadiloglu, S ., an d Erkm en, O . 1999. Lipase Production b y *Rhizopus oryzae* growing on different carbon and Nitrogen sources. *J Sci Food Agric.*, 79:1936- 1938.

Gill, R . A. and Robothan, P. W. J. 1989. Composition S ources and Sources i dentification of petroleum hydrocarbon and their residues. *J. Treth MW Ed.*, 1: 11- 40.

Lakshmi, B., K angueane, P ., A braham, B. and Pennatheu, G. 19 99. Effec t of vegetable oil in Secretion of lipase fr om *Candida rugosa* 9DSM2031. *Lett. Appl. Mircobiol.*, 29: 66 - 70.

Mannuel F errer, Francisco, J. P lou, F uensanta Reyes a nd Antonio Ba llesteros, 200 0. Purification a nd pr operties of a li pase from *Pencillium chrysogenum* isolated from industrial waste. *J. Chem. Technol. Biotechnol.*, 75 : 5 69- 576.

Nakashima, T., Fukuda, H ., K yotani, S ., a nd Marikowa, H . 19 98. C ulture Co nditions for Intracellular Lip ase Pro duction by *Rhizopus chinensis* and Its Immobilization within Biomass Support Particles”. *J. Ferment.Technol.*, 66: 441- 448.

Novotny, C., D olezalova, L ., Musil, P ., and Novak, M. 1988. The Production of Lipases by Some *Candida* and *Yarrowia* yeasts. *J. Basic Microbiol.*, 28: 221- 227.

Rahman, B aharum, S.N . and Ba sri, M . 20 05. High-yield p urification of a n orga nic so lvent-tolerant lipase from *P seudomonas* sp s train S5. *Anal Biochem.*, 341:267-74.

Rohit, S ., Yusuf, C. and Ullamchand, B. 20 01. Production, purifica tion, cha racterization and application of lipases. *Biotechnol Adv.*, 19: 627- 662.

Sadasivam, S., a nd Manic kam, A . 19 96. Biochemical m ethods, new age in ternational limited, publishers, second edition.

Selva Mohan, T., P alavesam, A . and Imm anvel, G.2008. Isolation and characterization of Lipase producing *Bacillus* Strains from oil m ills waste. *Afr. J. Biotechnol.*, 7: 2728 – 2735.

Shah, K.R. Pat el, P. M. an d Bh att, S.A. 2007. Lipase production by *Bacillus* sp. under different physio-chemical conditions. *Journal of Cell and Tissue Research*. 7: 913-916.

Subhas, K ., S, a nd R obert, L ., I. 19 98. Bioremediation’s f undamentals a nd ap plication, Technomic P ublish. Com p. inc. La ncaster, pennsylvannia 19604. U.S.A., 1: 87 – 98.

Walavalkar, G. S . and Ba pal, M. M., 200 2. A new sourc es o f lipase *Staphylococcus* Warneri BW94.. *Ind. J. Exp. Biol.*, 40: 1280 – 1284.