

Karyotypic Descriptions of Five Cyprinid Fish Species from Western Ghats, India

N. Agnes Flora¹, M. Raja² and M. Arunachalam^{1*}

Received: 11 November 2014 / Accepted: 15 November 2014/ Published Online: 15 December 2014

©Gayathri Publishers 2014

Abstract

The karyotypic and cytological characteristics of five native cyprinid fishes of Western Ghats of peninsular India were investigated by examining the metaphase chromosomes spreads obtained by Giemsa staining method. The diploid chromosome numbers of *Barilius canarensis*, *Chela fasciatus* *Puntius conchonius* and *Garra mullya* were $2n=50$ and *Osteochilichthys nashii* has $2n=48$. Chromosome number of *Puntius conchonius* and *Garra mullya* is in agreement with the previous published work but with different chromosome formula. This is the first report of karyotypic information on these species such as *Barilius canarensis*, *Chela fasciatus* and *Osteochilichthys nashii* from Western Ghats, Ideogram was prepared for each species by measuring the chromosome. The results may be useful for population study, taxonomic problems and conservation of this native fishes.

Keywords: Cyprinid fishes- Chromosome- Karyotyping- Western Ghats.

Citation: Agnes Flora, N., Raja, M. and Arunachalam, M. 2014. Karyotypic descriptions of five Cyprinid Fish species from Western Ghats, India . *Int.J.Biol.Technology*,5(3):14-20.

Address for communication

¹Manonmaniam Sundaranar University, Sri Paramakalyani Centre for Environmental Sciences, Alwarkurichi-627 412, Tamil Nadu, India. E.mail:arunacm@gmail.com

²Department of Biotechnology, Periyar University, Periyar Palkalai Nagar, Salem - 636 011, Tamil Nadu, India. E.mail:wetlandraja@gmail.com

*Corresponding author E.mail:arunacm@gmail.com

Manuscript Type : **Review**

Received Manuscript : **Via Email**

Approved Letter : **Received**

Funding Source: **Nil**

Conflict of Interest : **Nil**

Manuscript Full Responses: **Author**

1. Introduction

Cypriniformes in peninsular India is represented by 4 families, 8 sub families, 40 genera and 166 species. Family Cyprinidae has 4 subfamilies, 27 genera and 135 species (Arunachalam *et al.*, 2008). Fishes are characterized either by the occurrence of stable karyotypic structure and chromosomes numbers or by divergent groups with an extensive chromosome diversity (De Rosa *et al.*, 2007). Polyploidization and chromosome rearrangements among and within fish families were common (Volckaert and Agnèse, 1996). Cytogenetic study was not successful or widespread as in other vertebrate groups because of the presence large number of small chromosome and the karyotypic data on fishes were available only for 10% of the species approximately 25,000 species (Ramasamy 2010). The typical karyotype for the cyprinids worked so far consists of 6-8 pairs of metacentric chromosomes, 12-17 pairs of submeta and subtelo centric chromosomes and 3-4 pairs of acrocentric chromosomes (Ràb, 1991; Ràb and Collares-Pereira, 1995).

Fontana *et al.*, (1997) showed that the diploid chromosome number of fishes varies from $2n=22$ to 26 in some species and it may vary from $2n=240$ to 260. $2n=50$ is the chromosome number for most of cyprinid fishes and it is considered as model chromosome number for cyprinid fishes (Al-sabti, 1991; Gul *et al.*, 2004). Polyploidy chromosome state is also observed in some cyprinid fishes (Oellerman *et al.*, 1990). The genus *Puntius* of the family Cyprinidae is karyologically well known with 26 species and it was the most extensively explored genus (Sharma *et al.*, 1990) and the intraspecific variation has also been noted (Sharma and Agarwal, 1981).

Chromosome study is useful in addressing ambiquituis in classification of fish species (Hamid Reza Esmaili *et al.*, 2010). Chromosome polymorphism has well known effects on body size (Barbadilla *et al.*, 1994). Results from cytogenetic analysis of fishes have great importance in evolution, systematics, aquaculture and mutagenesis (Amemiya 1986, Al-Sabti 1991) has attention in recent years (Galetti 2000, Ozouf-Costaz 1992). Since morphological data

classifications are no longer considered cutting edge, chromosomal analysis is used for genetic studies and for taxonomy and phylogeny research (Catalina Luca *et al.*, 2010).

The Western Ghats is one of the biodiversity hotspots that supports rare, endemic and threatened species of fauna and flora of which nearly 250 species were freshwater fishes. Increasing importance of chromosomal studies on fish and the lack of karyotypic data on endemic fishes forced us to this study. For karyotypic study five species fishes belongs to the family Cyprinidae namely *Barilius canarensis*, (Jerdon) *Chela fasciatus* Silas, *Puntius conchonius*, (Hamilton) *Osteochilichthys nashii*, (Day) and *Garra mullya* (Sykes) were selected. Information on the karyotype of *Barilius canarensis*, *Chela fasciatus*, and *Osteochilichthys nashii* is the first report.

2. Materials and Methods

Samples were collected using cast and gill nets from streams and rivers in different parts of Western Ghats and were transferred to Manonmaniam Sundaranar University laboratory. 10 healthy five specimens of each species were taken for this study and chromosome preparation was carried out by using the modified protocol of Arunachalam and Murugan (2007). Fishes were injected with 0.5% colchicine (1ml/100g of body weight) and allow them to swim in well aerated water. Fishes were sacrificed after 2-3 hrs. The kidney tissues were taken and placed in hypertonic KCl for 45 min and fixed in cornyo's reagent. Then the solutions were centrifuged for 10 min at 1000 rpm. Slides were heated at 50°C and the spreads were made by direct air drying method and the slides were stained with 5% Giemsa stain. 50 good spreads were taken from the preparation and were photographed. Standard idiogram was prepared by following Levan *et al.*, (1964). Detailed karyological morphometry was taken by using an ocular micrometer. The average length of short and long chromosome and the centromeric index were calculated for each chromosome. Chromosome pairs were classified following Macgregor (1993).

3. Results

Five images of species were shown in (Fig 1). More than 80% of observed fifty metaphase images prepared from the kidney cells for all the above five species support the following results. Chromosome spread (a) and karyotype (b) of the five species shown in (Fig 2). NF and the maximum distance between two adjacent chromosomes were shown in (Table 1). The diploid chromosome number of *Barilius canarensis* was 2n=50 with the karyotypic formula of 2 metacentric, 9 submetacentric, 2 subtelocentric and 12 telocentric chromosomes and their total length ranged from 0.2 to 1.1 μ m and the idiogram was shown in (Fig 3). The karyotype of *Chela fasciatus* was 2n=50 comprised of 5 metacentric, 17 submetacentric

and 3 telocentric chromosomes and their total length was ranged from 0.2 to 1.5 μ m. (Fig. 4). The diploid chromosome number of *Osteochilichthys nashii* was 2n=48, comprised of 18 subtelocentric and 6 telocentric chromosomes. The chromosome total length ranged from 0.3 to 1.4 μ m calculated from the mean values of the measurements of best mitotic metaphase spreads. (Fig 5). Diploid chromosome number of *Puntius conchonius* was 2n=50 comprised of 17 metacentric, 2 submetacentric, 4 subtelocentric and 2 telocentric with a total length range from 0.2 to 3.4 μ m. (Fig. 6). The karyotype of *Garra mullya* showed 2n= 50 with a karyotypic formula of 9 metacentric, 5 submetacentric, 3 subtelocentric and 8 telocentric chromosomes and the chromosome total length ranged from 0.3 to 1.1 μ m. (Fig. 7).

Fig. 1: The experimental fishes

Tab1. Chromosome formula of the four species.

S.No	Species	Chromosome category					NF	Max. distance between adjacent chromosome
		2n	m	sm	st	t		
1	<i>Barilius canarensis</i>	50	2	9	2	12	76	0.2
2	<i>Chela fasciata</i>	50	5	17	-	3	94	0.1
3	<i>Osteochilichthys nashii</i>	48	-	-	18	6	88	0.4
4	<i>Puntius conchonius</i>	50	17	2	4	2	100	0.2
5	<i>Garra mullya</i>	50	9	5	3	8	90	0.1

 © 2014 GTRP Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

<http://www.gbtrp.com/ijbt.htm>

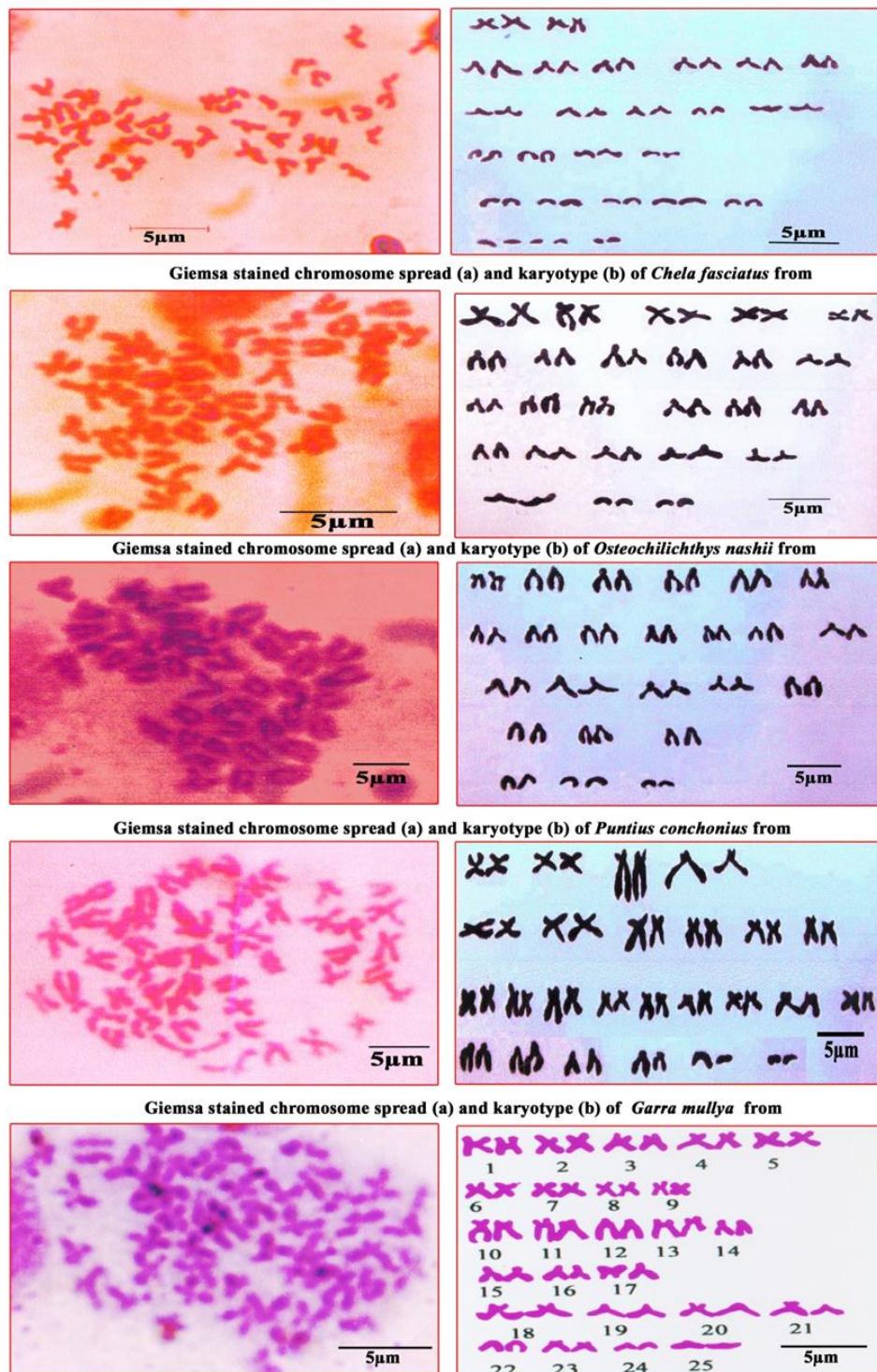
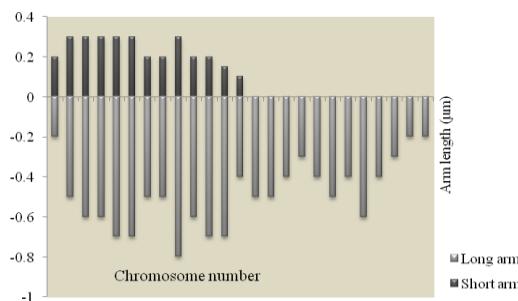
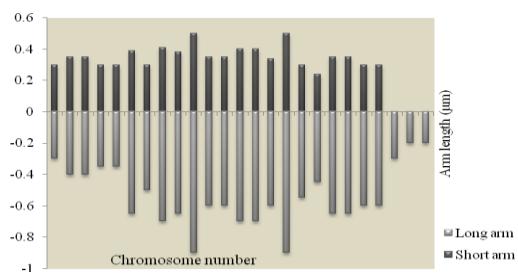
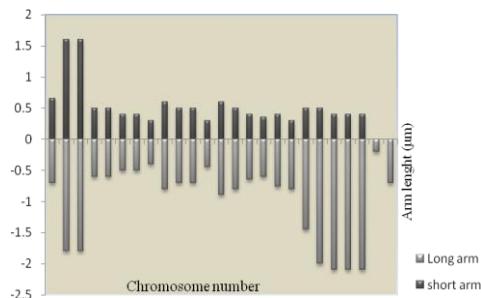
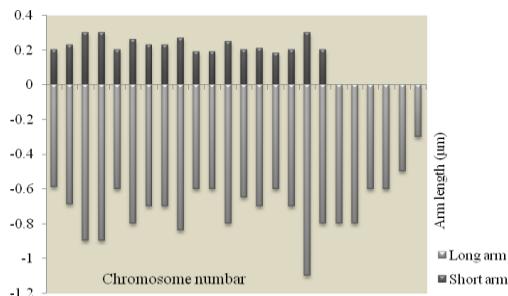
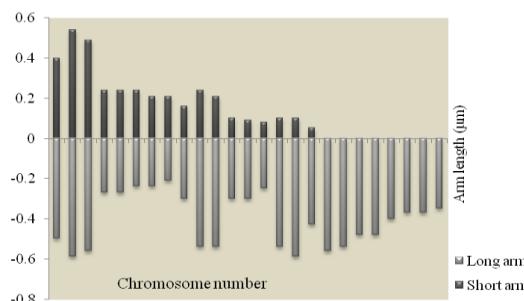







Fig.2: Giemsa stained chromosome spread and karyotype of studied fish species

Fig. 3. Idiogram of *Barilius canarensis*Fig. 4. Idiogram of *Chela fasciatius*Fig. 5. Idiogram of *Puntius conchonius*Fig. 6. Idiogram of *Osteochilichthys nashii*Fig. 7. Idiogram of *Garra mallya*

4. Discussion and Conclusion

This study is the first karyotypic report for the species, *Barilius canarensis*, *Chela fasciat* and *Osteochilichthys nashii*. Nayyar (1964) reported the diploid chromosome number $2n=52$ for *Salmophasia bacaila*. Diploid chromosome number of *P. conchonius* is $2n=50$ and this is in agreement with the earlier report (Nayyar 1964) for the same species but with varied chromosome formula. This result also agrees with the $2n$ chromosome number for other species of this genus such as *P. sophore*, *P. conchonius*, *P. stigma*, *P. ticto* ($28m+16sm+6st$), *P. chola* ($2m+2sm+46t$) (Prabhuti Kumari Sahoo *et al.*, 2007), *P. arulius* and *P. tambraparnie* (Arunachalam and Murugan, 2007). This may be accountable that the chromosome number is conserved among the species of the genus *Puntius*.

Nagpue *et al.*, (2006) reported diploid chromosome number for *Garra mallya* was 50 with the chromosome formula $9m+7sm+5st+4t$ from Chalakkudy River, Kerala, India. The result for *Garra mallya* showed the same chromosome number but different karyotypic formula which indicates that different karyotypic forms exist. Karyotype analysis Sahoo *et al.*, (2007) was reported as $2n= 50$ for *Garra gotyla*, *G. kemp* and *G. lissorrhynchus* with different karyotypic formulae. Gorshkova *et al.*, (2011) reported the same diploid number of chromosomes for *G. rufa* and *G. ghorensis*. Khuda Buksh *et al.*, (1980) reported the same chromosome number for *Garra lamta* ($3m+9sm+6st+7t$). Esmaeili *et al.*, (2009) reported that

G. persica (15 m+8 Sm+1 st) an endemic species from Iran has 2n=48. This indicates that the diploid number of chromosome is not conserved in this genus. This information may be helpful to study the species which have taxonomic ambiguities.

5. References

Al-Sabti, K. 1991. Handbook of Genotoxic Effects and Fish Chromosomes. J. Stephan Institute, Jamova 39, Ljubljana Yugoslavia.

Amemiya, C.T. 1986. Cytogenetic and Cytosystematic Studies on the Nucleolus Organizer Regions of North American Cyprinid fishes. Texas A&M University. Ph.D. Thesis.

Arunachalam, M. and Muralidharan, M. 2008. Cypriniform fishes of Peninsular India: Taxonomy and Generic descriptions. In: Arunachalam M, Ravichandran, P. and Murugesan, A. G. (ed.) *Conservation Ecology*. Publication Division, Manonmaniam Sundaranar University. 1-91pp.

Arunachalam, M. and Murugan, M. 2007. Discovery of sex chromosome in deccan mahseer *Tor khudree* from Tamil Nadu Western Ghats, India. *Zoos' print journal.*, 22(6): 2723.

Barbadilla, A, Ruiz, A, Santos, M. and Fontdevila, 1994. Matting pattern and fitness. Component analysis associated with inversion polymorphism in natural population of *Drosophila buzzatii*. *Evolution.*, 48: 727-780.

Catalina, L., Radu, S. and Marieta, C. 2010. Comparative karyotype in different lineages of cyprinid fish (Teleostei: Cypriniformes: Cyprinidae) *Studia Universitatis "Vasile Goldiș", Seria Științele Vieții* Vol. 20, issue 1, pp. 37-41.

De Rosa, L.V.S., Foresti, F., Martins, C., Oliveira, C., Sobrinho, P.E. and Wasko, A.P. 2007. Cytogenetic analyses of two Curimatidae species (Pisces Characiformes) from the Paranapanema and Tietê Rivers. *Braz. J. Biol.*, 67(2): 1590-1519.

Hamid Reza, H., Ebrahimi, M., Ansari, T. H., Teimory, A.G and Ghorbanali, 2009. Karyotype analysis of Persian stone lapper, *Garra persica* Berg, 1913 (Actinopterygii: Cyprinidae) from Iran. *Current Science.*, Vol. 96 Issue 7, p 959.

Fontana, F., Rossi, R., Lanfredi, M., Arlati, G. and Bronzi, P. 1997. Cytogenetic characterization of cell lines from three sturgeon species. *Caryologia*, 50: 91-95.

Galetti, P.M., Aguliar, C.T. and Molina, W.F. 2000. An overview of marine fish cytogenetics. *Hydrobiologia*. 420: 55-62.

Gul, S., Colak, A., Sezgin, I. and Kaloglu, B. 2004. Karyotype analysis of *Alburnus heckeli* (Battalgil, 1943) from Lake Hazer. *Turkish Journal of Veterinary and Animal Sciences*, 28: 309-314.

Hamid Reza E., Halimeh Z., Ali, G., Mehregan, E., Zeinab, G., Azad, T., and Talat Hojat A. 2010. Karyotype Analysis of the King Nase Fish, *Chondrostoma regium* (Heckel, 1843) (Actinopterygii: Cyprinidae) from Iran. *Turkish Journal of Fisheries and Aquatic Sciences*, 10: 477-481.

Khuda-Bukhsh, A. R., Gupta, S. K. and Goswami, S. 1980. Karyotypic studies in *Garra lamta* and *Mystus cavassius* (Pisces). *Italian Journal of Zoology*, 89:6, 557-562

Levan, A., Fredga, K and Sandberg, A.A. 1964. A nomenclature for centromeric position on chromosomes. *Hereditas.*, 52:201-220

Macgregor, U.C. 1993. Chromosome preparation and analysis. Chapter 6:177-186.

Nagpure, N.S., Kumar, R. and Srivastava, S.K. 2006. Cytogenetic studies of two cyprinids *Garra mallya* and *Barilius bakeri* from the Western Ghats of India. *J. Cytol. Genet.*, 7: 69-78.

Oellerman, L.K. and Skelton, P.H. 1990. Hexaploidy in yellowfish species, *Barbus*, (Pisces, Cyprinidae) from southern Africa. *Journal of Fish Biology*, 37: 105-115.

Ozouf-Costaz C. and Foresti, F. 1992. Fish Cytogenetic Research: Advances, Applications and Perspectives. *Neth. J. Zool.* 42: 277-290.

Prabhati, K. S., Prasanta N. and Ashoktaru Barat. 2007. Karyotypic diversity among three species of *Garra* (Family: Cyprinidae) from River Dikrong, Arunachal Pradesh, India. *Cytologia.*, 72(3): 259-263.

Nayyar, R. P. 1964. Karyotype studies in seven species of Cyprinidae. *Genetica* 5, Volume 35, Issue 1, pp 95-104.

Ràb, P. and Collares-Pereira, M. J. 1995. Chromosomes of European cyprinid fishes (Cyprinidae, Cypriniformes): a review. *Folia Zoologica*. 44: 193-214.

Ràb, P. 1991. The karyotype of the cyprinid fish, *Pseudaspius leptcephalus*. *Japan. J. Ichthyol.*, 38: 329-331.

Ramasamy K.A., Bela Z., Kamatchi B. 2010. Karyotype of a Bagrid catfish, *Mystus vittatus*, from the freshwater system of Chidambaram, Tamil Nadu, India. *Science Asia.*, 36: 157-160

Sharma, O.P, Tripathi, N.K. Agarwal, A and Tripathi, S. 1990. Karyotypic diversity in genus Puntius (Cyprinidae: Pisces). *The nucleus.*, 33: 81-83.

Sharma, O.P. and Agarwal, A. 1981. The somatic and meiotic chromosome of P. conchonius (Cyprinidae) from Jammu and Kashmir states. India. *Genetica*. 56: 235-237.

Volckaert F. A and Agnèse, J. F. 1996. Evolutionary and population genetics of the Siluroidei, *Aquat, Living Resour.*, 9:81-92.