

Studies on the impact of organic farming on physico-chemical and microbial properties of soil

T.M. Jothimani¹, A. Saravanakumar², R. Ravikumar³

Received: 22 November 2014 / Accepted: 29 November 2014/ Published Online: 15 December 2014

©Gayathri Publishers 2014

Abstract

Soil health was a key founding principle for the development and practice of organic farming. Such farming practices, combined with the proper management of the farm and concurrently available renewable resources, can result in the rejuvenation of the soils and sustainable, improved crop productivity. Effective use of farmyard manure, vermicompost and organic liquids are a key to nutrient cycling on organic farms. These organic fertilizers enhance the soil physical, chemical and microbial properties, so that it can become a potential alternative to conventional farming systems. The present study assesses the impacts on soil macro and micronutrients of organic farming. It also identifies and assesses soil processes regulated by microbes under organic and conventional management practices. Our findings supports the view that organically treated soil (OS) activates the growth of microorganisms as compared with conventionally used synthetic chemical fertilizers. This enrichment of microbes possibly leads to the enhanced level of soil organic carbon, soil organic nitrogen, and microbial biomass in OS.

Keywords: Soil health; vermicompost; organic liquids

Citation: Jothimani, T.M., Saravanakumar, A. and Ravikumar, R. 2014. Studies on the impact of organic farming on physico-chemical and microbial properties of soil . *Int.J.Biol.Technology*, 5(3):33-39.

Address for communication

T.M. Jothimani¹, A. Saravanakumar², R. Ravikumar³

¹ Department of Plant Biotechnology, M.V.M. Govt. Arts College for Women, Dindigul

² PG & Research Dept. of Botany, Saraswathi Narayanan College, Madurai.

³ PG & Research Dept. of Botany, Jamal Mohamed College, Tiruchirappalli.

Corresponding Author Email: sarwanbio@gmail.com

Manuscript Type : Manuscript

Received Manuscript : **Via Email**

Approved Letter : **Received**

Funding Source: Nil

Conflict of Interest : **Nil**

Manuscript Full Responses: **Author**

1. Introduction

Organic agriculture is an ecological production management system that promotes and enhances biodiversity, biological cycles and soil biological activity. It is based on minimal use of off-farm inputs and on management practices that restore, maintain and enhance ecological harmony. The influence of organic and conventional management practices on soil chemistry, microbial activity, and biomass has been extensively studied (García-Ruiz *et al.*, 2009; Ge *et al.*, 2011). Such farming practices, combined with the proper management of the farm and concurrently available renewable resources, can result in the rejuvenation of the soils and sustainable, improved crop productivity. The application of organic matter from such resources as animal manures, crop residues and green manuring has been shown to replenish organic C and improve soil structure and fertility (Guisquiani *et al.*, 1995; Parham *et al.*, 2002; Saviozzi *et al.*, 2002).

Organic farmers manage for high soil organic matter (SOM) and net N mineralization rates. Furthermore, use of synthetic pesticides, which can negatively impact soil biota (e.g., Miller and Jackson, 1997; Sukarno *et al.*, 1993), is also prohibited (USDA National Organic Program Standards). As a consequence, microbial activity is often higher in organic than conventionally-managed soils (Carpenter-Boggs *et al.*, 2000; Drinkwater *et al.*, 1995; Lundquist *et al.*, 1999), community composition can be more complex (Mader *et al.*, 2002), and in some instances, invertebrate density and biodiversity increases (Hole *et al.*, 2005). Abundance of arbuscular mycorrhizal (AM) fungi may also increase under organic management (Mader *et al.*, 2002).

Soil is a complex mixture of minerals, oxides, organic matter, microorganisms, and other compounds that have been produced during the soil formation process, which provides an extremely large variety of soils. In particular, the topmost layers of agricultural soil are very delicate and dynamic in their behavior. Therefore, soil analysis has been a routine practice for the evaluation of soil fertility (Du *et al.*, 2009). Soils under organic farming (compost and green

manure) have better quality and microbial activity (Nautiyal *et al.*, 2010) due to crop rotation and reduced application of synthetic nutrients and pesticides in organically managed soil (Shannon *et al.*, 2002; Wu *et al.*, 2008). Soil health was a key founding principle for the development and practice of organic farming, as evident in one of its original precepts (here in the words of Lady Eve Balfour, 1943) that “the health of soil, plant, animal and man is one and indivisible”. Briefly, the early organic movement focused strongly on issues of human nutrition and health, as well as the promotion of soil fertility through the use of composts and other organic fertilizers.

A large percentage of the Earth's active carbon (C) is deposited in soil organic matter (SOM), and its cycling rate is tightly linked to nitrogen (N) availability in natural and managed ecosystems (Gärdenäs *et al.*, 2011). SOM turnover, the formation of dissolved organic N (DON), and its subsequent turnover to inorganic N play a key role in soil fertility and available nutrient supply to both vegetation and soil microorganisms. Additional ON molecular components are derived from dry and wet deposition, rainfall, litter fall, animal residues (urine and feces), and soil organic fertilizer applications (Kalbitz *et al.*, 2000). Due to soil degradation processes such as wind and water erosion, organic matter decline, soil compaction, and soil fertility loss occur rapidly in these areas because of high temperatures and low and irregular precipitation. This study is a part of a comprehensive investigation to monitor the soil fertility and to assess the status of macro and micronutrients in three different soil types.

2. Materials and Methods

Soil samples were collected from three different fields: (1) soil treated with organic fertilizers (OS); (2) soil treated with chemical fertilizers (CS) and (3) untreated control soil of Reddiyapatti village of Viruthunagar District. OS received of composted Farm yard manure (FYM), vermicompost (VC) and organic liquid manures like Beejamurth and Jeevamurth. In OS, no tillage and crop residue removal have been practiced since the past 10 years. In CS, chemical fertilizers were applied in the form of elements of nitrogen, phosphorus, and potassium in 20:10:10 kg/acre

ratio, respectively. The fertilizers were applied annually for the past 10 years. Within each from OS, CS, and control, four 10×10-m areas were selected for uniform topology and soil type. Soil samples were collected randomly from three fields, at the depth of 15 cm, in each of the four selected areas in May 2012. Three samples collected from four areas were randomly mixed, and the composite was considered as the three replicates for analysis. Soil samples were kept in plastic bags on ice and transported to the laboratory and stored at 4°C. Soil samples were sieved to pass 2-mm round-holed sieve. Visible organic matter was removed, before analysis and samples were split into two subsamples. One was stored at 4°C for microbial and physical analysis and the other was air dried and stored for

chemical analysis and the residual soil was air-dried for chemical analysis.

3. Results and Discussion

In order to analyze the influence of fertilizers fortification on soil physicochemical properties and microbial population summarized in Table 1, 2 & 3. Soil samples from three plots were deep black granular sandy loam in CS, brown granular sandy loam from control, and black granular sandy loam from OS. In organically treated soil the sand, slit and clay % were 78.4, 16.2 & 5.4 respectively (Table 1).

Table 1: Physical properties of three different soils

Parameters	Control	Conventional	Organic
Sand %	77.5	77.8	78.4
Slit %	16.4	17.4	16.2
Clay %	6.1	4.8	5.4
Textural class	brown granular sandy loam	Deep black granular sandy loam	Black granular sandy loam

The Chemical treatment showed an increase in pH (7.9) and EC (0.53dSm⁻¹). High inputs of FYM, vermicompost and organic liquids in the OS resulted in significantly enhanced total available nitrogen (450.16Kg ha⁻¹), phosphorus (40.26Kg ha⁻¹), and potassium (406.78Kg ha⁻¹) compared with CS and control soils (Table 2). Results of this study demonstrate that total organic C content

in OS soil was about 1.03% and it was higher compared to the CS (0.45%) and control (0.38%) soils. Chemical fertilizers significantly affected soil micro nutrients (Table 2). The highest total soil Fe levels (21.34ppm), Mn (24.68ppm), Zn (3.47ppm) and Cu (1.78ppm) were observed in the OS and followed the trend OS>CS>control.

Table 2 – Chemical properties of three different soils

Parameters	Unit	Control	Conventional	Organic
pH	-	6.6	7.9	7.2
EC	dSm ⁻¹	0.25	0.53	0.42
N	Kg ha ⁻¹	288.51	317.73	450.16
P	Kg ha ⁻¹	16.8	20.4	40.23
K	Kg ha ⁻¹	214.32	273.97	406.78
Organic carbon	%	0.38±0.05	0.45±0.02	1.03±0.02
Fe	ppm	7.08	10.92	21.34
Mn	ppm	17.34	21.52	24.68
Zn	ppm	0.96	2.36	3.47
Cu	ppm	0.51	1.24	1.78
Microbial biomass carbon	µg gm ⁻¹ of dry soil	135.46±7.39	147.38±10.05	188.16±4.75
Readily mineralizable carbon	µg gm ⁻¹ of dry soil	126.87±3.55	138.37±6.45	192.26±2.67

 © 2014 GTRP Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

<http://www.gbtrp.com/ijbt.htm>

Microbial population (heterogeneous bacteria and actinomycetes) was also significantly higher in OS compared to CS and control soil which was further confirmed by higher microbial biomass carbon content in OS($188.16 \mu\text{g gm}^{-1}$) which was higher compared to CS ($147.38 \mu\text{g gm}^{-1}$) and control($135.46 \mu\text{g gm}^{-1}$) soils. Results demonstrate that the highest microbial population was recorded in OS soil samples followed by control and CS (Table -3). Soil microbes like bacteria, fungi and actinomycetes were recorded 5.46, 2.55 and 4.85 respectively.

Table - 3: Microbial properties of three different soils

Microbial population (log CFU g ⁻¹ soil)	Control	Conventional	Organic
Bacteria	4.75	4.26	5.46
Fungi	2.37	2.25	2.55
Actinomycetes	4.26	3.28	4.85

In present study, results showed that compared to OS or control soil samples, microbial population is significantly reduced in chemical fertilizer-managed soil (CS). Organic manure has significant impact on the biomass C and the activity, compared with mineral fertilizers. This was in agreement with the results obtained by Chu *et al.*, (2007). Application of organic amendments to soil not only increases the total organic carbon content and its different fractions but also has a series of effects on microbial proliferation and activity was also reported by Bastida *et al.*, (2008). Lagomarsino *et al.*, (2009), Nannipieri *et al.* (2008) and Shi *et al.*, (2006) have reported that enzyme activities in the soil are related to the organic matter and microbial biomass. The application of cow dung to improve the crop yield has been indicated since the time of Kautilya (*ca.* 300 BC), which was later continuously followed by Indian farmers in various ways (Nene YL 2006). Swain and Ray (2009) has reported some plant growth promoting rhizobacteria isolated from cow dung; our result supported the view that cow dung compost amendment (OS) activates comparatively more microorganisms than conventionally used chemical fertilizers. This

higher activity of microbes possibly leads to the enhanced soil organic carbon, soil organic nitrogen, and microbial biomass in OS and control soil compared to CS as shown in Table- 2.

Organic management soil (OS), which is known primarily for the application of organic fertilizer and the absence of artificial fertilizers, resulted in significantly higher DON amounts than that of conventional management soil (CS). This result is consistent with Ge *et al.*, (2010a) for soluble organic N in soil solutions extracted from greenhouse and open-field horticultural soils. Organic fertilizers increase the numbers of beneficial microbes in the soil that contribute to soil fertility. For tomato cultivation, Tu *et al.*, (2006) showed that microbial biomass and microbial activity were generally higher in organically managed soils, cotton gin trash being most effective, than conventional soil treatment with synthetic fertilizers.

3.1 Conclusion

The results of our study indicated that organic soil management practices have a substantial effect on soil macro, micro nutrients and microbial population. Additional studies investigating the long-term functional significance of organic C and N under different soil management practices, particularly in organic practices, are therefore warranted. Organic management currently provides a clear advantage over conventional farming as a whole with respect to microbial diversity. This review indicates that organic farming has the potential to help in achieving the conservation of soil biodiversity. Organic farming systems have the potential to deliver significant environmental benefits. The effect of changing to organic farming will depend on specific cropping and management practices on each farm. It is important that we study and improve nutrient management on all farm systems and in the context of plant, animal and human health in order to develop more sustainable farming systems. It can be concluded that organic farming practices were beneficial in increasing the soil fertility and soil health for the long term use.

4. References

- Anderson, J.P.E. 1982. Soil respiration. In: Page AL (ed) *Methods of soil analysis, part 2. Chemical and microbiological properties*. American Society of Agronomy, Madison, pp 837–871.
- Bastida, F., Kandeler, E., Moreno, J.L., Ros, M., García, C. and Hernández, T. 2008. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. *Appl. Soil. Ecol.*, 40:318
- Blake, G.R. and Hartge, K.H. 1986. Particle density. In: Klute A (ed) *Methods of soil analysis, Part 1. Physical and mineralogical methods*, 2nd edn. American Society of Agronomy, Madison, pp 377–382.
- Bremner, J. M. and Mulvaney, C.S. 1982. Nitrogen-total. In: Page, A.L. (ed) *Methods of soil analysis. Part 2. Chemical and microbiological properties*. Book series no. 9 SSSA, Madison, p 595.
- Carpenter-Boggs, L., Kennedy, A. C. and Reganold, J. P. 2000. Organic and biodynamic management, effects on soil biology. *Soil Sci. Soc. Am. J.*, 64: 1651–1659.
- Cavagnaro, T. R., Jackson, L. E., Six, J., Ferris, H., Goyal, S., Asami, D. and Scow, K. M. 2006. Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. *Plant and Soil*, 282: 209–225.
- Chu, H., Fujii, T., Morimoto, S., Lin, X., Yagi, K., Hu, J. and Zhang, J. 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. *Soil Biol. Biochem.*, 39:2971.
- Drinkwater, L. E., Letourneau, D. K., Workneh, F., Van Bruggen, A. H. C. and Shennan, C. 1995. Fundamental differences between conventional and organic tomato agroecosystems in California. *Ecol. Appl.*, 5: 1098–1112.
- Du, C., Zhou, J., Wang, H., Chen, X., Zhu, A. and Zhang, J. 2009. Determination of soil properties using Fourier transform mid infrared photoacoustic spectroscopy. *Vib. Spectrosc.*, 49:32–37.
- García-Ruiz, R., Ochoa, V., Vieglia, B., Hinojosa, M. B., Pea-Santiago, R., Liebanas, G., Linares, J. C. and Carreira, J.A. 2009. Soil enzymes, nematode community and selected physico-chemical properties as soil quality indicators in organic and conventional olive oil farming: influence of seasonality and site features. *Appl. Soil Ecol.*, 41:305–314.
- Gärdenäs, A. I., Ågren, G. I., Bird, J.A., Clarholm, M., Hallin, S., Ineson, P., Thomas, K., Knicker, H., Nilsson, S.I., Näsholm, T., Ogle, S., Paustian, K., Persson, T. and Stendahl, J. 2011. Knowledge gaps in soil carbon and nitrogen interactions - from molecular to global scale. *Soil Biol. Biochem.*, 43:702–717.
- Ge, T., Nie, S., Wu, J., Shen, J., Xiao, H., Tong, C., Huang, D., Hong, Y. and Iwasaki, K. 2011. Chemical properties, microbial biomass, and activity differ between soils of organic and conventional horticultural systems under greenhouse and open field management: a case study. *J. Soils Sediment*, 11:25–26.
- Giesler, R. and Lundström, U. 1993. Soil solution chemistry: effects of bulking soil samples. *Soil Sci. Soc. Am. J.* 57:1283–1288.
- Glaser, B., Lehmann, J. and Zech, W. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review. *Biol. Fertil. Soils*, 35:219–230.
- Guisquiani, P. L., Paghai, M., Gightho, G., Businelli, D. and Benetti, A. 1995. Urban waste compost: effects on physical, chemical, and biochemical soil properties. *J. Environ. Qual.*, 24:75–182.
- Heckman, J. 2006. A history of organic farming: transitions from Sir Albert Howard's war in the soil to the USDA National Organic Programme. *Renew Agric. Food Syst.*, 21:143–150.
- Hole, D. G., Perkins, A. J., Wilson, J.D., Alexander, I. H., Grice, P.V. and Evans, A.D. 2005. Does organic farming benefit biodiversity. *Biol. Conserv.*, 122: 113–130.
- Jackson, L.E., Pascual, U. and Hodgkin, T. 2007. Utilizing and conserving agrobiodiversity in agricultural landscapes. *Agric. Ecosyst. Environ.*, 121:196–210.

- Jones, D.L. and Willett, V.B. 2006. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. *Soil Biol. Biochem.*, 38:991–999.
- Kamini Narain, Taiyyaba Yazdani, Mohd Muzamil Bhat and Mohammad Yunus, 2012. Effect on physico-chemical and structural properties of soil amended with distillery effluent and ameliorated by cropping two cereal plant spp. *Environ. Earth Sci.*, 66:977–984.
- Kalbitz, K., Solinger, S., Park, J. H., Michalzik, B. and Matzner, E. 2000. Controls on the dynamics dissolved organic matter in soils: a review. *Soil Sci.*, 165:277–304.
- Khaleel, R., Reddy, A.R. and Overcash, M.R. 1981. Changes in soil physical properties due to organic waste applications: a review. *J. Environ. Qual.*, 10:133–141.
- Lagomarsino, A., Moscatelli, M.C., Di Tizio, A., Mancinelli, R., Grego, S. and Marinari, S. 2009. Soil biochemical indicators as a tool to assess the short-term impact of agricultural management on changes in organic C in a Mediterranean environment. *Ecol. Indic.*, 9:518.
- Lundquist, E. J., Scow, K. M., Jackson, L.E., Uesugi, S.L. and Johnson, C. R. 1999. Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. *Soil Biol. Biochem.*, 31: 1661–1675.
- Ma' der, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P. and Niggli, U. 2002. Soil fertility and biodiversity in organic farming. *Science*, 296: 1694–1697.
- Marinari, S., Mancinelli, R., Campiglia, E. and Grego, S. 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. *Ecol. Indic.*, 6:701.
- Mengel, K. 1996. Turnover of organic nitrogen in soils and its availability to crops. *Plant Soil.*, 181:83–93.
- Miller, R. L. and Jackson, L. E. 1997. Survey of vesicular–arbuscular mycorrhizae in lettuce production in relation to management and soil factors. *J. Agr. Sci.*, 130: 173–182.
- Morgan, K. and Murdoch, J. 2000. Organic vs. conventional agriculture: Knowledge, power and innovation in the food chain. *Geoforum*, 31: 159–173.
- Mulvaney, R.L. and Mulvaney, R.L. 1996. Nitrogen-inorganic forms. In: Sparks DL (ed) *Methods of soil analysis, Part 3*, SSSA book series 5. Soil Science Society of America and American Society of Agronomy, Madison, pp 1123–1184 332.
- Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., Valori, F. 2008. Effects of root exudates in microbial diversity and activity in rhizosphere soils. In: Nautiyal CS, Dion P (eds) *Molecular mechanisms of plant and microbe coexistence*. Soil Biology Series, vol 15. Springer, Berlin, p 339.
- Nautiyal, C.S., Chauhan, P. S. and Bhatia, C. R. 2010. Changes in soil physico-chemical properties and microbial functional diversity due to 14 years of conversion of grassland to organic agriculture in semi-arid agroecosystem. *Soil Till Res.*, 109:55–60.
- Nelson, D. W. and Sommers, L. E. 1982. Total carbon, organic carbon, and organic matter. In: Page Miller AL, Keeney RH (eds) *Methods of soil analysis, Part 2*, 2nd edn. American Society of Agronomy– Soil Science Society of America, Madison, pp 539–580.
- Nene, Y.L. 2006. Indian pulses through the millennia. *Asian Agri. Hist.*, 10:179–202.
- Page, A.L., Miller, R. H. and Keeney, D. R. 1982. *Methods of soil analysis. Part 2, Chemical and microbiological properties*, 2nd ed., Agronomy vol. 9. ASA, SSSA, Madison, p 1159.
- Parham, J. A., Deng, S. P., Raun, W. R., Johnson, G. V. 2002. Longterm cattle manure application in soil. 1. Effect on soil phosphorus levels. Microbial biomass C and dehydrogenase and phosphatase activities. *Soil. Fertility Soils*, 35:328–337.
- Pimentel, D., Hepperly, P., Hanson, J., Douds, D. and Seidel, R. 2005. Environmental, energetic, and economic comparisons of organic and conventional farming systems. *Bioscience* 55:573–582.

- Rhoades, J.D. 1982. Cation exchangeable capacity. In: Pace AL, Miller RH, Keeney DR (eds) Methods of soil analysis: Part 2. Chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of American, Madison, pp 149-165.
- Saviozzi, A., Bufalino, P., Levi-Minzi, R. and Riffaldi, R. 2002. Biochemical activities in a degraded soil restored by two amendments: a laboratory study. *Biol. Fertility Soils*, 35:96-119.
- Shannon, D., Sen, A. M. and Johnson, D. B. 2002. A comparative study of the microbiology of soils managed under organic and conventional regimes. *Soil Use Manag.*, 18:274.
- Shaw, R.J. 1999. Soil salinity-electrical conductivity and chloride. In: Peverill, K.I., Sparrow, L.A. and Reuter, D.J. (eds) Soil analysis, an interpretation manual. CSIRO Publishing, Collingwood, pp 129-145.
- Shi, W., Dell, E., Bowman, D. and Iyyemperumal, K. 2006. Soil enzyme activities and organic matter composition in a turfgrass chronosequence. *Plant Soil.*, 288:285.
- Singh, K. P., Archna Suman, Singh, P. N. and Menhi Lal, 2007. Yield and soil nutrient balance of a sugarcane plant-ratoon system with conventional and organic nutrient management in sub-tropical India. *Nutr. Cycl. Agroecosyst.*, 79:209-219.
- Stevenson, F. J. 1982. Nitrogen in agricultural soils. Soil Science Society of America Inc, Madison, WI, p. 940.
- Sukarno, N., Smith, S. E. and Scott, E. S. 1993. The effect of fungicides on the vesicular-arbuscular mycorrhizal symbiosis. I. The effects on vesicular-arbuscular mycorrhizal fungi and plant growth. *New Phytol.*, 123: 139-147.
- Swain, M.R. and Ray, R.C. 2009. Biocontrol and other beneficial activities of *Bacillus subtilis* isolated from cow dungmicroflora. *Microbiol. Res.*, 164:12.
- Tel, A. and Hargerty, M. 1984. Soil and Plant analyses study guide for agricultural laboratory directors and technologies working in tropical regions IITA and University of Gueloh p. 227.
- Tida Ge, Hongzhao Yuan, Paula Roberts, Davey, L., Jones, Hongling Qin, Chengli Tong and Danfeng Huang, 2012. Amino acid and peptide dynamics in horticultural soils under conventional and organic management strategies. *J. Soils Sediments*, 12:323-333.
- Tu, C., Ristaino, J.B. and Hu, S. 2006. Soil microbial biomass and activity in organic tomato farming systems: effects of organic inputs and straw mulching. *Soil Biol. Biochem.*, 38:247-255.
- Van Delden, A. 2001. Yield and growth of potato and wheat under organic N-Management. *Agronomy J.*, 93:1370-1385.
- Vasvi Chaudhry, Ateequr Rehman, Aradhana Mishra, Puneet Singh Chauhan and Chandra Shekhar Nautiyal, 2012. Changes in Bacterial Community Structure of Agricultural Land Due to Long-Term Organic and Chemical Amendments *Microb Ecol* (published online 15 March 2012).
- Vaughan, D., Lumsdon, D. G. and Linehan, D. J. 1993. Influence of dissolved organic matter on the bio-availability and toxicity of metals in soils and aquatic systems. *Chem. Ecol.*, 8:185-201.
- Willer, H. and Lukas, K. 2009. The world of organic agriculture: statistics and emerging trends. International Federation of Organic Agriculture Movements, Bonn.
- Wu, T., Chellemi, D. O., Graham, J. H., Martin, K. J. and Rosskopf, E. N. 2008. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. *Microb Ecol.*, 55:293.