

Research Article

Phytochemical and antimicrobial potential of crude methanolic extract of fruits and fruit pulps of *Garcinia mangostana* Linn.

Muthiah Maridass

FISSD'S- Research Institute of Conservation Ecology (Run by Foundation for Innovative Science and Socio -Economic Development), Tirunelveli, Tamilnadu-627011,India.
Email: drmaridass@gmail.com; Mobile : +91-9487567793

Abstract

Aim: The main objective of this study was to conduct phytochemical screening and antimicrobial activity of fruits and fruit pulps of *Garcinia mangostana* Linn.

Methods: The preliminary phytochemical compounds were screened using different standard methods and anti-microbial activities of fruits and fruit pulps of *G. mangostana* Linn were evaluated against both organisms like bacteria and fungi using the disk - diffusion method.

Results: The results of the present study, preliminary phytochemical screening and identification of bioactive compounds in crude extracts of *Garcinia mangostana* Linn fruits and pulps revealed the presence of phenols, flavonoids, glycosides, alkaloids, tannins and terpenoids and their ethanolic extract of fruits and pulps was observed that higher zone of inhibition active against *Escherichia coli* and *Candida albicans*. The conclusion of the present study suggests that the phenolic compounds of anthocyanins found in the fruits and pulp of *G. mangostana* contribute to antimicrobial activity.

Keywords: *Garcinia mangostana* Linn; fruits and pulps; antimicrobial activity;phytochemical compounds

Cite this Article : Maridass, M. (2025). Phytochemical and antimicrobial potential of fruits and fruit pulps of *Garcinia mangostana* Linn. . *Botanical Report*, Vol.No.14(1)pp.1-5.

Journal Information

Journal : Botanical Report : **ISSN :** 2319-8230 (Print)

Publisher :Gayathri Global Academic & Scientific Publisher (GGASP), Tirunelveli, Tamilnadu,India

Article History

Article received dated on : 08-12-2024

Corrected and Resubmission dated on 13-03-2025

Published Online : 15-03-2025

1. Introduction

Phytochemicals have become an intense focus of research interest because of their perceived beneficial effects for health, including anticarcinogenic, antiatherogenic, antiulcer, anti-thrombotic, anti-inflammatory, immunomodulating, antimicrobial, vasodilatory, and analgesic effects. Therefore, the search for exploitation of natural antioxidants, especially of plant origin, has greatly increased in recent years (Rao *et al.*, 2014). *Garcinia mangostana* Linn, belongs to the family Clusiaceae/Guttiferae. It is a tropical plant, and it is known as mangosteen. It originates from Southeast Asia. The literature review of this plant indicates that the fruit rind contains mangostins, which are popularly used in herbal cosmetics for anti-acne properties (Pothitirat *et al.*, 2009). The plant is rich in xanthones and known to hold a wide range of naturally occurring polysaccharide (Bennett and Lee, 1989). Earlier report, active compounds of xanthone isolated from fruits of *Garcinia* species, which is good anti-inflammatory, antioxidant, anti-proliferative, anti-plasmoidal and powerful antibacterial activity (Pedraza Chaverri *et al.*, 2009). The present study was to evaluate the preliminary phytochemical screening and antimicrobial activities of *Garcinia mangostana* Linn, fruits.

2. Materials and Methods

2.1 Plant Collection

The plant materials of *Garcinia mangostana* Linn, was collected from Megamalai landscape in the Southern Western Ghats. Meghamalai located in the Western Ghats, Theni District of Tamilnadu, India.

2.2 Extraction

The fresh fruit were collected separately, washed with tap water, chopped into smaller pieces with a knife and then kept in the shade for 30 days to dry and then crushed using mortar and pestle, then further reduced to powder using an electric blender and then stored in airtight closed bottles until required. The powder materials were passed through sieve number 40 and used for further studies.

For the extraction, the plant materials were first ground into a fine powder using a grinding machine. The extraction of powder materials was a cold percolation method (Azwanida, 2015). The powder materials were soaked in methanol for 24 h at room temperature for three successive days. Each day, the dissolved extracts were filtered through Whatman filter paper (No. 1), collected, and then evaporated at reduced pressure below 50 °C using a rotary evaporator. The working solution was prepared in 50% DMSO. The fruit extracts were maintained at 4 °C in the refrigerator until use (Farias *et al.*, 2013). The percentage of yield extract was calculated by the following formula:

$$\text{Percentage of yield (\%)} = \left(\frac{\text{Dry weight of extract}}{\text{Dry weight of a plant}} \right) \times 100$$

2.3 Qualitative analysis of secondary phytochemicals

The phytochemical screening of the extracts was conducted using standard procedures described by Trease and Evans (1989).

The following qualitative tests were carried out: Extracts of fruits and pulps were evaluated for preliminary screening of secondary bioactive compounds such as alkaloids, quinones, coumarin, flavonoid, steroid, phenol and sugar/glycosides following the reported methods with minor modifications.

2.4 Antimicrobial activity

2.4.1 Tested microbial strains

Tested bacterial strains like *Bacillus subtilis*, *Escherichia coli*, *Klebsiella pneumonia*, *Salmonella thyphi* and fungal strains *Candida albicans* and *Aspergillus niger*.

2.4.2 The antibacterial properties

The antibacterial properties of various plant extracts were evaluated using a modified cup-plate method (Cappuccino and Natalie Sherman, 2009). To prepare the culture plates, 30 ml of Mueller Hinton Agar medium (MHA) was poured into sterile petri dishes. A uniform inoculum suspension was then spread across the agar surface with an L-spreader to ensure an even distribution of tested microorganisms. A flamed cork borer was employed to create wells measuring 6 mm in diameter, positioned 1-2 cm from the edge of the plates. Each plate was labelled, and 100 µl of plant extract was aseptically introduced into the wells at varying concentrations of 100, 200, and 400 µg/ml. The plates were subsequently incubated at 37°C for a period of 24 to 48 hours. The effectiveness of the extracts was assessed by measuring the diameter of the inhibition zones using an Antibiotic zone reader. The experiment was conducted in triplicate and repeated three times, with average values recorded. The results were then compared to the inhibition zones produced by a standard antibiotic disc, specifically Tetracycline (30 µg/disc, Hi Media, Mumbai).

2.4.3 The antifungal properties

The antifungal properties of various plant extracts were evaluated using the cup-plate method as described by Cappuccino and Natalie Sherman (2009). To prepare the culture plates, 30 ml of Potato Dextrose Agar medium (PDA) was poured into sterile petri dishes. A uniform inoculum suspension was then spread across the agar surface with an L-spreader to ensure an even distribution of the microorganisms. Using a sterilized cork borer, wells measuring 6 mm in diameter were created in the agar, positioned 1-2 cm from the edge of the plates. Each plate was labelled, and 100 µl of each plant extract was aseptically introduced into the wells at varying concentrations of 100, 200 and 400 µg/ml. The plates were subsequently incubated at 25°C for a period of 24 to 48 hours. The effectiveness of the extracts was assessed by measuring the diameter of the inhibition zones with an antibiotic zone reader. The experiment was conducted in triplicate and repeated three times, with average values recorded. The results were then compared to the inhibition zones produced by a standard antifungal disc, Fluconazole (10 µg/disc,).

3. Results and Discussion

3.1 Qualitative screening of phytochemicals

It is demonstrated that extraction yield was achieved using methanol, which recorded a yield of 7.5 (w/v). Qualitative analysis to detect the existence of different classes of phytochemicals, such as phenolic compounds of flavonoids, phenol and Glycosides within ethanolic extracts of fruits and fruit pulps of *Garcinia mangostana* (Table-1). The phenolic compounds of flavonoids, phenol and glycosides were detected more amount while, terpenoids are moderated and alkaloids, saponin and tannin are in low quantity in fruit pulps.

In previous studies, Mahadeva Rao *et al.*, (2016) reported that three extracts of methanol, ethanol and aqueous extracts of *Musa paradisiaca* were found to be phenols, glycosides, flavonoids, alkaloids, tannins and terpenoids and tested negative results for saponins. Fruit colour is an important marketing attribute of mangosteen, which is the attractive purplish-red of mangosteen is mainly due to anthocyanin (Du and Francis, 1977). Among them, the occurrence of anthraquinones is relatively rare, but other phytochemicals have homogeneous distributions in *Tapinanthus* species (Lu Wang,2022).

Table- 1: Preliminary phytochemical screening of crude methanolic extract of *Garcinia mangostana* fruits

Sl.no.	Bioactive compounds	Presence/ Absent
1	Alkaloids	+
2	Terpenoids	++
3	Flavonoids	+++
4	Glycosides	++
5	Phenols	+++
6	Saponin	+
7	Tannins	+

(+) indicates the present (-) absent.

Antimicrobial Activity

Medicinal plants have demonstrated that antimicrobial properties attributed to a range of phytochemicals, including alkaloids, flavonoids, and tannins, which are capable of suppressing the proliferation of bacteria, fungi, and other microorganisms (Vaou *et al.*,2021). The present study observed that the results of the ethanolic extract of *Garcinia mangostana* fruits are active against all tested bacteria and fungi represented in table -2.

The results of this study showed that increasing the concentration of fruit extracts which inhibited the bacteria and fungus has also been increased. The maximum activity of zone of inhibition of this fruit extract was active against *Escherichia coli* (19.6mm). Similar results of observed that ethanolic extracts of pomegranate (*Punica granatum*) are effective against *E. coli* (Ashraf *et al.*,2018). Ethanolic extracts derived from clove and rosemary exhibit notable antimicrobial properties against *E. coli*, (Vaou *et al.* 2021). Similar studies observed that several species of *Peganum harmala*, *Echinophora platyloba*, *Rosmarinus officinalis* and *Heracleum persicum* showed good antifungal activity (Somayeh Jahani *et al.*, 2017). Earlier studies according to Ali *et al.*,(2011) reported that water extract of *Syzygium aromaticum* L. (Myrtaceae) buds, methanol extracts of *Ficus carica* L. (Moraceae) and *Olea europaea* L. (Oleaceae) leaves and *Peganum harmala* L. (Nitrariaceae) seeds and *S. aromaticum maximum* inhibited growth of *Staphylococcus aureus*, *Salmonella typhi*, *Pseudomonas aeruginosa* and *Candida albicans*. Saravanan *et al.*, (2011) reported that ethanolic extracts of *Calophyllum inophyllum* have potential beneficial properties. According to Benkeblia, (2004) reported that organic solvent extracts displayed enhanced antimicrobial activity. Okemo, (1996) reported that alcoholic extracts are known to contain alkaloids, coumarins, and tannins and coumarins and tannins possess antibacterial and antihelminthic properties. Hedberg *et al.*, (1983) have shown that alcohol is more effective than ethyl acetate and acetone in extracting phytochemicals from plant sources (Eloff, 1998; Cowan, 1999). The conclusion of the present study may be acted as phenolic compounds of anthocyanins found to be fruits and pulps of *G. mangostana* contribute to the antimicrobial activity. Further studies, isolation, and identification of the active compounds from the potential plants of *G. mangostana* are being conducted in our laboratory.

Table-3: Antibacterial activity of ethanolic extract of fruits and fruit pulbs of *Garcinia mangostana*

Sl.No.	Tested Concentration mg/ml-1	Zone of inhibition in diameter (mm)							
		Gram-positive Bacillus subtilis	Gram-Negative Salmonella typhi	Gram-negative Pseudomonas aeruginosa	Gram-positive Staphylococcus aureus	Gram-negative Escherichia coli	Gram-negative Vibrio col- erae	Fungi	
1	100	12.3±1.33	15.33±0.9	15.6±1.33	14.00±0.66	16.33±0.9	16.6±0.7	11.33±0.6	15.6±0.9
2	200	14.6±0.88	16.3±1.33	16.3±0.71	15.33±1.33	18.08±1.33	17.33±0.7	15.08±0.6	16.33±0.9
3	400	15.3±1.33	17.6±1.33	18.6±0.66	17.6±0.99	19.6±0.9	18.6±0.6	18.06±1.3	17.08±1.3
4	Std	16.33±0.9	18.6±0.88	17.33±1.33	18.6± 0.66	17.08±0.66	19.33±1.33	17.6±0.8	15.33±0.9

SD± SE Values are expressed as triplicates

Ethics approval and consent to participate

Ethics approval and consent to participate are not relevant in this case, as our research did not involve animals or human subjects.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no existing conflicts of interest.

4. References

Rao, U.S., Khamsah, S.M., Abdurrazaq, M., Bashir, A.A., Mohaslinda, M. and Rosmawati, M.A. (2014). Taxonomical, Phytochemical and Pharmacological review of *Musa sapientum* var *paradisiaca*. *Research Journal of Pharmacy and Technology*, 7(11): 1356 - 1361.

Pothitirat, W., Chomnawang, M. and Gritsanapan Wandeer, (2009). Anti-acne inducing bacteria activity and α -mangostin content of *Garcinia mangostana* fruit rind extracts from different provenience. *Songklanakarin Journal of Science and Technology*, 31(1): 41-47.

Bennett, G.J., and Lee, H.H. (1989). Xanthones from Guttiferae. *Phytochemistry*, 28: 967-999.

Pedraza Chaverri, L.M., Reyes Fermin, E.G., Nolasco Amaya, M., Orozco Ibarra, and Medina, O.N. (2009). ROS Scavenging capacity and neuroprotective effect of alpha mangostin against 3-nitropropionic acid in cerebellar granul neurons. *Experimental and Toxicology and Pathology*, 61:491-501.

Azwanida, N. (2015). A review on the extraction methods uses in medicinal plants, principle, strength and limitation. *Med. Aromat. Plants*, 4:196.

Farias, D.F., Souza, T.M., Viana, M.P., Soares, B.M., Cunha, A.P., Vasconcelos, I.M., et al., (2013). Antibacterial, antioxidant, and anticholinesterase activities of plant seed extracts from Brazilian semiarid region. *Biomed. Res. Int.*, 1-9.

Trease, G.E. and Evans, W.C. (1989). Trease and Evans's Textbook of Pharmacognosy. 13th Edition. Cambridge University Press, London. 546.

Cappuccino, J.G. and Natalie Sherman, (2007). Microbiology: A laboratory manual. 8th edition, Published by Pearson Education.

Mahadeva Rao, U.S., Muhammad Abdurrazak, and Khamsah Suryati Mohd, (2016). Phytochemical screening, total flavonoid and phenolic content assays of various solvent extracts of tepal of *Musa paradisiaca*. *Malaysian Journal of Analytical Sciences*, 20(5):1181-1190.

Du, C.T., and Francis, F.J. 1977. Anthocyanins of mangosteen, *Garcinia mangostana* L. *J. Food Sci.*, 42: 1667.

Lu Wang, Degang Kong, Jinli Tian, Wei Zhao, Yueru Chen, Ying An, Xue Liu, Fulin Wang, Fujie Cai, Xiaohui Sun, Qing Liu, Wenru Zhang, Jingzhen Tian, Honglei Zhou, (2022). *Tapinanthus* species: A review of botany and biology, secondary metabolites, ethnomedical uses, current pharmacology and toxicology. *Journal of Ethnopharmacology*, 296:115-462.

Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C. and Bezirtzoglou, E. (2021). Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. *Microorganisms*, 279 (10):2041.

Ashraf, A., Mostafa Abdulaziz, A., Al-Askar Khalid, S., Almaary Turk, M., Dawoud Essam, N., Sholkamy Marwah, M. and Bakri, (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. *Saudi Journal of Biological Sciences*, 25(2):361-366.

Somayeh Jahani Saphora, Bazi Zahra Shahi, Maryam Sheykzade, Asadi Fahimeh Mosavi, and Gelareh Sohil Baigi et al., (2017). Antifungal effect of the extract of the plants against *Candida albicans*. *Int. J. Infect.*, 4(2):e36807.

Ali, N.H., Faizi, S., and Kazmi, S.U. (2011). Antibacterial activity in spices and local medicinal plants against clinical isolates of Karachi, Pakistan. *Pharm. Biol.*, 49(8):833-9.

Saravanan, R., Dhachinamoorthi, D., Senthilkumar, K. and Thamizhvanan, K. (2011). Antimicrobial activity of various extracts from various parts of *Calophyllum inophyllum* L. *Journal of Applied Pharmaceutical Science*, 1 (03):102-106.

Benkeblia, N. (2004). Antimicrobial activity of essential oil extracts of various onions (*Allium cepa*) and Garlic (*Allium sativum*). *Lebenswissenschaften*, 37: 263-268.

Okemo, P.O. (1996). Antimicrobial efficacy of selected medicinal plants used by Kenyan Herbal doctors. Ph.D. thesis, Kenyatta University of Nairobi, (1996) pp. 173-90.

Hedberg, I., Hedberg, O., Madati, P., Mshigeni, K.E., Mshiu, E.N., and Samuelsson, G. (1983). Inventory of plants used in traditional medicine in Tanzania.II. Plants of the family Dilleniaceae to Opiliaceae. *J. Ethnopharm.*, 9: 105-128.

Eloff, J.N. (1998). Which extraction should be used for screening and isolation of antimicrobial components from plants. *J. Ethnopharm.*, 60: 1-8.

Cowan, M.M. (1999). Plant products as antimicrobial agents. *Clin. Microbiol. Rev.*, 12: 564-582.

Saha, K., Mukhejee, P.K., Mandal, S.C., Pal, M. and Saha, B.P. (1995b). Antibacterial activity of *Leucas lavandulaefolia* (Labiatae). *Indian Drugs*, 32(8): 402-404.

Saha, K., P.K. Mukharjee, M. Pal and B.P. Saha, 1997. Medicinal properties and chemical constituents of *Leucas lavandulaefolia*: A review. *J. Med. Aromat. Plant Sci.*, 19: 1045-1048.

Saha, K., Mukherjee, P.K., Das, J., Mandal, S.C., Pal, M. and Saha, B.P. (1997). Hypoglycaemic activity of *Leucas lavandulaefolia* Rees. in streptozotocin-induced diabetic rats. *Phytother. Res.*, 11: 463-466.

Chandrashekhar, K.S. and Prasanna, K.S. (2010a). Hepatoprotective activity of *Leucas lavandulaefolia* against carbon tetrachloride-induced hepatic damage in rats. *Int. J. Pharma Sci. Res.*, 2: 101-103.

Chandrashekhar, K.S. and Prasanna, K.S. (2010). Hypoglycemic effect of *Leucas lavandulaefolia* wild in alloxan-induced diabetic rats. *J. Young Pharm.*, 1: 326-329.

Chandrashekhar, K.S. and Prasanna, K.S. (2010). Anti-inflammatory potential of flavones glycoside from ethanol extract of the aerial parts of the plant *Leucas lavandulaefolia*. *Der. Pharma Chemica*, 2: 21-24.

Mukherjee, K., Saha, B.P. and Mukherjee, P.K. (2002b). Psychopharmacological profiles of *Leucas lavandulaefolia* Rees. *Phytother. Res.*, 16: 696-699.

Mukherjee, P.K., Saha, K., Murugesan, T., Mandal, S.C., Pal, M. and Saha, B.P. (1998). Screening of anti-diarrhoeal profile of some plant extracts of a specific region of West Bengal, India. *J. Ethnopharmacol.*, 60: 85-89.

Gupta, J.K., Upmanyu, N., Patnaik, A.K. and Mazumder, P.M. (2010). Evaluation of anti-ulcer activity of *Leucas lavandulifolia* on mucosal lesion in rat. *Asian J. Pharm. Clin. Res.*, 3: 118-118.

Mukherjee, K., Saha, B.P. and Mukherjee, P.K. (2002). Evaluation of antipyretic potential of *Leucas lavandulaefolia* (Labiatae) aerial part extract. *Phytother. Res.*, 16: 686-688.

Saha, K., Mukherjee, P.K., Das, J., Pal, M. and Saha, B.P. (1997). Wound healing activity of *Leucas lavandulaefolia* Rees. *J. Ethnopharmacol.*, 56: 139-144.

Felhi, S., Daoud, A., Hajlaoui, H., Mnafgui, K., Gharsallah, N. and Kadri, A. (2017). Solvent extraction effects on phytochemical constituents' profiles, antioxidant and antimicrobial activities and functional group analysis of *Ecballium elaterium* seeds and peels fruits. *J. Food Sci. Technol.*, 37, 483-492.

Haq, N., Ullah, G., Bibi, S., Kanwal, M.S. and Mirza, A.B. (2012). Antioxidant and cytotoxic activities and phytochemical analysis of *Euphorbia wallichii* root extract and its fractions. *Iran J. Pharm. Res.*, 11: 241-249.

Chang, C.C., Yang, M.H., Wen, H.M., and Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. *J. Food Drug Anal.*, 10: 178-182.

Wegdan Ali Shehata, M.D., Sohail Akhtar and Tanveer Alam, (2020). Extraction and estimation of anthocyanin content and antioxidant activity of some common Fruits. *Trends in Applied Sciences Research*, 15: 179-186.

Bhalodia, N. R., and Shukla, V. J. (2011). Antibacterial and antifungal activities from leaf extracts of *Cassia fistula* L.: an ethnomedicinal plant. *J. Adv. Pharm. Technol. Res.*, 2: 104-109.

Nisha, M.C., Subramanian, M.S., Prathyusha, P., and Santhanakrishnan, R. (2010). Comparative studies on antimicrobial activity of *Artemisia sieversiana* Ehrhart. Ex. Willd. and *Origanum vulgare* L. *Int. J. Pharmtech Res.*, 2, 1124-1127.

Geethika, K. and Kumar, P.S. (2017). Preliminary phytochemical screening of 6 members of *Leucas* (Lamiaceae). *International Journal of Pharmaceutical Sciences Review and Research*, 47(1): 60-64.

Aryal, S., Baniya, M.K., Danekhu, K., Kunwar, P., Gurung, R. and Koirala, N. (2019). Total Phenolic Content, Flavonoid Content and Antioxidant Potential of Wild Vegetables from Western Nepal. *Plants (Basel)*, 11: 8(4): 96.

Velioglu, Y.S., Mazza, G., Gao, L. and Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. *J. Agric. Food Chem.*, 46: 4113-4117.

Kahkonen, M.P., Hopia, A.I., Vuorela, H.J., Rauha, J.P., Pihlaja, K., Kujala, T.S. and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. *J. Agric. Food Chem.*, 47: 3954-3962.

Kurek Joanna, (2019). Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life'. Alkaloids - Their Importance in Nature and Human Life. Intech Open. doi:10.5772/intechopen.85400.

Mangathayaru, K., Thirumurugan, D., Patel, P.S., Pratap, D.V., David, D.J. and Karthikeyan, J. (2006). Isolation and identification of nicotine from *Leucas aspera* (willd) link. *Indian J Pharm Sci.*, 68: 88-90.

Mishra, T.N., Singh, R.S., Pandey, H.S. and Singh, S. (1995). A novel phenolic compound from *Leucas aspera*. *Indian J Chem.*, 34: 1108-10.

Mishra, T.N., Singh, R.S., Pandey, H.S. and Singh, S. (1992). Long-chain compounds from *Leucas aspera*. *Phytochemistry*, 1992, 31: 1809-10.

Goudgaon, N.M., Basavaraj, N.R. and Vijayalaxmi, A. (2003). Antiinflammatory activity of different fractions of *Leucas aspera* SPRENG. *Indian J Pharmacol.*, 35: 397-8.

Flávia dos Santos Silva, Melissa Fontes Landell, Gustavo Vasconcelos Bastos Paulino, Henrique Douglas Melo Coutinho and Ulysses Paulino Albuquerque, (2020). Antifungal activity of selected plant extracts based on an ethnodirected study. *Acta Bot. Bras.*, 34 (2): 443-445.

Cruz, M.C.S., Santos, P.O., Barbosa, A.M., et al., (2007). Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. *Journal of Ethnopharmacology*, 111: 409-412.

Babu, A., Mohamed, A.S.N., Jaikumar, K., Anand, D. and Saravanan, P. (2016). *In-vitro* antifungal activity of leaf extracts of *Leucas aspera* and *Leucas zeylanica*. *International Journal of Pharmaceutical Sciences and Research*, 7(2): 752-756.

In this article designed and published © 2025 by GTRP BIOJOURNALS is licensed under Creative Commons Attribution-Non Commercial - No Derivatives 4.0 International