

GC-MS Analysis of Chemical Constituents and Antibacterial activity of *Indigofera aspalathoides* D.C stem

G.Raju, N. Subash and M. Maridass

Received: 12 October 2013 / Accepted: 12 December 2013 / Published Online: 15 December 2013

© Gayathri Teknological Publishers 2013

Abstract

The whole plant of *Indigofera aspalathoides* DC has been medicinally used for cooling, demulcent and tumors, leprosy, cancer and skin disorders. The aim of present study was to analyse and identified in chemical composition of *I. aspalathoides* DC by Gas Chromatography–Mass Spectrometry (GC-MS) method and antibacterial activity of the hexane, chloroform and ethanol extract of *I. aspalathoides* DC. The results of *I. aspalathoides* stems were 21 chemical components identified by GC-MS method. The major compounds of terpenoids constituents were (all-Z)-Methyl eicosa-11,14-dienoate(16.84%), caparapidiol (11.11%), incensole (11.09%). The antibacterial activities of hexane and ethanol extract of *I. aspalathoides* were remarkable activity against *Vibrio harvae* (S.No.7771), *Aeromonas hydrophila* Sub sp. *Hydrophila* (S.No.1739) and *A. sobria* (S.No.1944). Chloroform extract of *I. aspalathoides* was moderate active against *Aeromonas hydrophila* Sub sp. *Hydrophila* (S.No.1739) and *Aeromonas sobria* (S.No.1944) and no activiy against *Vibrio harvae*. The conclusion of the present study indicates that phytochemical constituents of *I. aspalathoides* DC stem have a potential for antibacterial compounds for fish forming.

Keywords: *Indigofera aspalathoides* DC, terpenoids, Chromatography–Mass Spectrometry (GC-MS) method, antibacterial activity

Citation

Raju,G., Subash,N. and Maridass, M. 2013. GC-MS Analysis of chemical Constituents and antibacterial activity of *Indigofera aspalathoides* D.C stem. *Nature of Pharmaceutical Technology*,3(2):1-5.

Present Address

G. Raju, N. Subash and M. Maridass

Department of Zoology,Pioneer Kumaraswamy College,
Nagercoil,Tamil Nadu– 629003,South India
@ e-mail to :rajumaran@yahoo.co.in

Manuscript Type : **Research Article**

Received Manuscript : **Via Email**

Approved Letter : **Received** or Non Received

Funding Source: Support or **No Support**

Conflict of Interest : **Nil**

Manuscript Full Responses: **Authors**

Submission manuscripts info:

nptjournal@yahoo.com

© 2013 GTRP-GRF group

© 2013 GTRP Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

The genus of *Indigofera* belongs to the family Leguminosae. They are 750 species distributed throughout the tropical and subtropical regions of the world (Wikipedia,2013). *Indigofera aspalathoides* DC. commonly known as *Shivanar vembu* is distributed throughout the South India and Sri Lanka (Photo-1). The whole plant has been traditionally used for cooling, demulcent and odematosus tumors, leprosy, cancer and various skin disorders (Kirtikar and Basu,1975; Wealth of India,2001). The literature review of phytochemical analysis of *I. aspalathoides* found to be *n*-butyl ester of nanodecanoic acid, 1-octadecanol, 4-heneicosanone, α -amyrin, *n*-octacosanol, β -sitosterol, salicylic acid, erythroxydiol X, erythroxydiol Y and β -sitosterol-3 β -D-glucopyranoside (Rosy et al., 2010; Saraswathy et al., 2013). The pharmacological analysis of hepatoprotective activity of stem and roots (Gupta et al., 2004; Claime et al.,2012). In this present study is to investigate the chemical composition of *Indigofera aspalathoides* stem analyzed by GC- MS method and antibacterial activity was determined by disc diffusion methods.

Photo -1: Habitat of *Indigofera aspalathoides*

2. Materials and Methods

2.1 Collection of Plant Materials

The plant materials of *Indigofera aspalathoides* DC stem were air-dried, pulverized and the essential oil extracted into hexane by hydrodistillation methods for 4h.

2.2 GC-MS analysis

Chemical composition of Essential oils was analyzed by GC-MS methods. GC-MS method was performed by using a Perkin Elmer GC Claurus 500 system and gas chromatograph interfaced to a Mass Spectrometer (GC-MS) equipped with Elite-1 fused silica capillary column (30m \times 1 μ l was Mdf. Composed of 100% Dimethyl poly siloxane). For GC-MS detection, an electron ionization energy system with ionization energy of 70eV was used. Helium gas (99.999%) was used as the carrier gas at a constant flow rate of 1ml/min. and an injection volume of 2 μ l was employed (Split ratio of 10:1). Injector temperature was 250°C. The oven temperature was programmed from 110°C (isothermal for 2min.), with an increase of 10°C/min to 200°C, then 5°C /min. to 280°C, ending with a 9min. isothermal at 280°C. Mass spectra were taken at 70eV; a scan interval of 0.5 seconds and fragments from 45 to 450 Da. Total GC running time was 36 min. The relative percentage amount of each component was calculated by comparing its average peak area to the total areas. Software adopted to handle mass spectra and chromatograms was a Turbomass Ver.5.2.0.

2.3 Identification of Chemical constituents

Identification chemical Compounds were obtained by comparing the retention times with those of authentic compounds and the spectral data obtained from NIST libraries and comparisons with earlier literature (NIST,1999; Mc Lafferty and Stauffer, 1994. Mc Lafferty and Stauffer, 1988; Hochmuth ,2006; Adams, 2001).

2.4 Bacterial strains

Prawn pathogens of *Vibrio harveyi* (S.No.7771), *Aeromonas hydrophila* Sub sp. *hydrophila* (S.No.1739) and *Aeromonas sobria* (S.No.1944) were provided by IMTECH Chandigarh, for used in this study.

2.5 Media preparation

Nutrient agar media (Hi- Media) was prepared by manufacturer's instructions, and sterilized by autoclaving at 121°C for 15min, and dispensed aseptically into petri dishes. A volume of between 20ml nutrient agar medium was dispensed to achieve a depth of between 3-4mm, and left to solidify and then stored in the refrigerator at 4°C. The inoculation plates were air dried with the lids a jar until there were no moisture droplets on the petri dish surfaces (Collins *et al.*, 1995).

2.6 Preparation of discs

Stock solutions of each extract (hexane extract 1mg/ml, choroform 1mg/ml and ethanol extract 10mg/ml) were prepared in 1% aqueous dimethylsulfoxide (DMSO). Working extracts were prepared by two-fold serial dilutions of each stock solution in 1% aqueous DMSO.

2.7 Disc diffusion test

The anti-bacterial activity was assayed by disc diffusion methods(Clinical and Laboratory Standards Institute,2007; Ayo *et al.*, 2007; Mbaveng *et al.*, 2008). Results of the zone of inhibition were observed and measured at after 24hr period of incubation time. All the experiments were performed in duplicate. Dimethylsulfoxide (DMSO) was present in the negative control and positive control used as amikacin.

3. Results and Discussion

3.1 Composition of the essential oils

The chemical analysis of *Indigofera aspalathoides* stems, were 21 components identified by GC-MS method, which accounted for 100% of the total compounds. Their retention times and percentage of peak area are shown in Table -1 and Fig.1. The major compounds of terpenoids constituents were (all-Z)-methyl eicos-11,14-dienoate(16.84%), caparapidiol (11.11%), incensole (11.09%). The minor and trace compositions were represented in the Table-1. *Earlier*, (all-Z)-methyl eicos-11,14-dienoate minor amount present in the plant extract of *Andrographis paniculata* (Kalaiselvan *et al.*, 2012). While, our report was major constituents of

(all-Z)-methyl eicos-11,14-dienoate identified in stem of *Indigofera aspalathoides*.

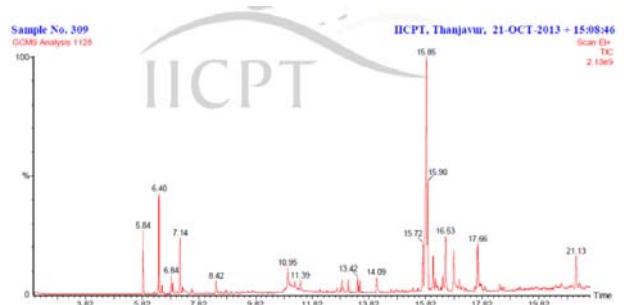


Fig.1: Results of GC- MS chromatogram of chemicals constituents of *Indigofera aspalathoides* stem

Table-1: Results of Chemicals constituents of *Indigofera aspalathoides* stem analyses by GC-MS methods

Sl. No	RT	Name of the compound	Peak Area %
1.	5.89	1-(5-Bicyclo[2.2.1]heptyl)ethylamine	0.60
2.	6.43	Benzinemethanol, 2-(2-aminopropoxy)-3-methyl-	1.46
3.	10.13	Tetrahydro-4H-pyran-4-ol	0.32
4.	10.69	2-Formyl-9-[α -d-ribofuranosyl]hypoxanthine	1.02
5.	10.88	α - δ , Mannofuranoside, methyl	9.18
6.	11.11	10-Methyl-E-11-tridecen-1-ol propionate	7.40
7.	11.37	Benzeneethanamine, 2,5-difluoro- α ,3,4-trihydroxy-N-methyl-	5.36
8.	11.58	Imidazole, 2-amino-5-[(2-carboxy)vinyl]-	3.37
9.	12.78	5-O-Methyl-d-gluconic acid dimethylamide	0.67
10.	13.00	Pentadecanoic acid, 2,6,10,14-tetramethyl-, methyl ester	9.57
11.	13.30	Cyclopenta[c]furo[3',2':4,5]furo[2,3-h][1]benzopyran-11(1H)-one, 2,3,6a,9a-tetrahydro-1,3-dihydroxy-4-methoxy-	2.30
12.	14.57	2-t-Butyl-4-methyl-5-oxo-[1,3]dioxolane-4-carboxylic acid	0.82
13.	15.34	trans-2-Undecen-1-ol	4.07
14.	16.17	incensole	11.09
15.	16.24	[1,1'-Bicyclopropyl]-2-octanoic acid, 2'-hexyl-, methyl ester	5.67
16.	16.92	caparapidiol	11.11
17.	17.72	2-Cyclopentene-1-undecanoic acid, (+)	0.74
18.	18.40	6,9,12-Octadecatrienoic acid, phenylmethyl ester, (Z,Z,Z)-	3.55
19.	18.69	1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, [S-(Z)]-	1.05
20.	33.97	5 α -Androstan-16-one, cyclic ethylene mercaptone	3.81
21.	34.97	(all-Z)-methyl eicos-11,14-dienoate	16.84

Table-2: Results of antibacterial activity of three organic solvents extract of *Indigofera aspalathoides* stem

Extract (s)	Zone Formation	Pathogens (Bacteria)		
		<i>Vibrio harveyi</i> (S.No.7771)	<i>Aeromonas hydrophila</i> Sub sp. <i>hydrophila</i> (S.No.1739)	<i>Aeromonas sobria</i> (S.No.1944)
Hexane	→	22	17	19
Chloroform	→	-	12	10
Ethanol	→	18	14	18
Standard	→	14	12	12

3.2 Antibacterial activity

Results of antibacterial activity of three organic solvents of hexane, chloroform and ethanol extract of *Indigofera aspalathoides* stem were shown in the table-2. The hexane and ethanol extract of *I. aspalathoides* were showed marked activity in all tested bacteria (Table-2). The chloroform extract of *Indigofera aspalathoides* was moderate activity of both species of *A. hydrophila* sub sp. *hydrophila* (S.No.1739) and *A. sobria* and no activity in *V. harveyi* (S.No.7771). Previously, Britto *et al.*,(2011) reported that three medicinal plants of *Phllanthus amarus*, *Aerva lanata* and *A.indica* were highly activity against *A. hydrophila*.

The conclusion of the present study indicates that the phytochemical constituents of *Indigofera aspalathoides* DC stem has a potential used for antibacterial compounds developed and control of bacterial pathogens of fish and shell fish.

4. Acknowledgements

The authors are thankful to University Grants Commission, New Delhi for financial support of this work and also thank to Principal, Pioneer Kumaraswamy College for providing all the necessary facilities to carry out this work.

5. References

Kirtikar, K.R. and Basu, B.D.1975. Glossary of Indian Medicinal plants; New Delhi: Periodical Experts, Vol. 1:338.

The Wealth of India, 2001. A Dictionary of Indian Raw Materials and industrial Products, Raw Materials; Council of Scientific and Industrial Research, New Delhi, Vol. 5: 176.

Rosy, B.A., Henry Joseph and Rosalie,2010. Phytochemical, pharmacognostical, antimicrobial activity of *Indigofera aspalathoides* vahl. (Fabaceae). *Int. J. Biol. Tech.*, 1(1):12-15.

Saraswathy, A., Mathuram, V. and Allirani, T. 2013. Chemical constituents of *Indigofera aspalathoides* Vahl. Ex.DC. *J. Pharmacog. and Phytochem.*, 2 (2):74-80.

Gupta, M., Mazumder, U.K., Haldar, P.K., Manikandan, L., Senthilkumar, G.P. and Kander, C.C.2004. Hepatoprotective activity of *Indigofera aspalathoides* against carbon tetrachloride induced liver damage in rats. *Orient. Pharm. Exp. Med.*,4:100-3.

Claimer, C.S., Mahesh, A., Similal, B., Rao, D.M. and Thangadurai, D. 2012. Protective Effect of *Indigofera aspalathoides* roots on N-Nitrosodiethylamine-induced Hepatocarcinogenesis in Mice. *Ind. J. Pharmaceutical Sciences*,74(2): 157-160.

National Institute of Standards and Technology,1999. In *PC version 1.7 of the NIST/EPA/NIH Mass Spectral Library*. Perkin Elmer Corporation, Norwalk, CT.

Mc Lafferty, F.W. and Stauffer, D.B.1994. Wiley Registry of Mass Spectral Data. *Mass Spectrometry Library Search System Bench-Top/PBM version 3.10d, Palisade, Newfield* 6th edition.

Mc Lafferty, F.W. and Stauffer, D.B.1988. *The Wiley/ NBS Registry of Mass Spectral Data*. 4th edition. Wiley -Interscience, New York.

Hochmuth, D.2006. Mass Spectral Library "Terpenoids and Related Constituents of Essential Oils". In *Library of MassFinder 3.0*. Hamburg, Germany.

Article ID : npt151213101

- Adams, R.P. 2001. *Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy*. Allured Publishing. Carol Stream, IL, USA.
- Collins, C.H., Lyne, P.M. and Grange, J.M. 1995. Microbiological methods, 7th ed. Butterworth-Heinemann, Great Britain, pp.178-205.
- Ayo, R.G., Amupitan, J.O. and Zhao, Y. 2007. Cytotoxicity and antimicrobial studies of 1,6,8-trihydroxy-3-methyl-anthraquinone (Emodin) isolated from the leaves of *Cassia nigricans* Vahl. *Afr. J. Biotech.*, 6: 1276-1279.
- Clinical and Laboratory Standards Institute, 2007. Methods for determining bactericidal activity of antimicrobial agents. Tentative standards M26-T. National Committee for Clinical Laboratory standards, Wayne, PA.
- Mbaveng, A.T., Ngameni, B., Kuete, V., Simo, I.K., Ambassa, P., Roy, R., Bezabih, M., Etoa, F., Ngadjui, B.T., Abegaz, B.M., Meyer, J.J.M., Lall, N. and Beng, V.P. 2008. Anti-microbial activity of the crude extracts and five flavonoids from the twigs of *Dorstenia barteri* (Moraceae). *J. Ethnopharm.*, 116: 483-489.
- Kalaiselvan, A., Gokulakrishnan, K., Anand, T. 2012. Gas chromatography-Mass spectrum analysis of bioactive components of the ethanol extract of *Andrographis paniculata*. *J. Pharm. Biomed. Sci.*, 20(20):1-3.
- Britto, A., Herin Sheeba Gracelin, D. and Sebastian, S.R. 2011. Antibacterial activity of a few medicinal plants against *Xanthomonas campestris* and *Aeromonas hydrophila*. *Journal of Biopesticides*, 4(1): 57-60.

Electronic References

Indigofera. Flora of China. <http://en.wikipedia.org/wiki/Indigofera>, updated on 24,06,2013.