

Synergistic Effect of the Combined Ethanolic and Aqueous extracts of *Garcinia kola* and *Ocimum gratissimum* on Methicillin Resistant *Staphylococcus aureus* and Multi-Drug Resistant *Pseudomonas aeruginosa*

I.U. Nwankwo, C.E. Onwuakor, and O. J. James

Received: 4 April 2015 / Accepted: 6 April 2015 / Published Online: 15 April 2015
 © Gayathri Publishers 2015

Abstract: The synergistic antibacterial activity of aqueous and ethanolic, extracts of *Garcinia kola* and *Ocimum gratissimum* leaves against methicillin resistant *Staphylococcus aureus* (MRSA) and multi-drug resistant *Pseudomonas aeruginosa* (MDRPA) was evaluated. The ethanolic and aqueous extracts of *G. kola* seeds and *O. gratissimum* leaves showed antibacterial activities at varying concentrations (50, 100, 150) against the test organisms (MDRPA and MRSA). The MIC of the aqueous extract of *G. kola* seeds against MDRPA and MRSA were 25mg/ml and MBC of 50mg/ml respectively, 25 and 12.5mg/ml for the ethanolic extract of *Garcinia kola* seed and MBC of 50 and 25mg/ml for *P. aeruginosa* and *S. aureus* respectively. The ethanolic and aqueous extracts of *O. gratissimum* leaves had MIC 50 and 25mg/ml for aqueous extracts, 12.5 and 25mg/ml for the ethanolic extract against the test organisms. The combined aqueous and ethanolic extract of both *G. kola* seeds and *O. gratissimum* leaves showed more antibacterial activities against the test organisms than the single extract with MIC of 12.5mg/ml and MBC of 25mg/ml for *P. aeruginosa* and *S. aureus*. Combined use of both plant parts could find useful application in combating emerging drug resistance caused by methicillin resistant *Staphylococcus aureus* and multi-drug resistant *Pseudomonas aeruginosa*.

Keywords: Synergism, *Garcinia kola*, *Ocimum gratissimum*, Methicillin resistant *Staphylococcus aureus*, Multi-drug resistant *Pseudomonas aeruginosa*

Citation : Nwankwo, I.U., Onwuakor, C.E. and James, O. J. 2015. Synergistic Effect of the Combined Ethanolic and Aqueous extracts of *Garcinia kola* and *Ocimum gratissimum* on Methicillin resistant *Staphylococcus aureus* and Multi-Drug Resistant *Pseudomonas aeruginosa*. *Nature of Pharmaceutical Technology*, 5(1):1-9.

Present Address

Michael Okpara University of Agriculture Umudike,
 Abia State, Nigeria.

Corresponding E-mail address:
 chijiokeonwuakor@gmail.com;
 :immaugo@yahoo.com

Submission manuscripts info:

nptjournal@yahoo.com

© 2014 GTRP-GRF group

Manuscript Type : **Research Article**

Received Manuscript : **Via Email**

Approved Letter : **Received** or Non Received

Funding Source: **Support** or **No Support**

Conflict of Interest : **Nil**

Manuscript Full Responses: **Authors**

1. Introduction

Plant have long been the principal tools of traditional medicinal systems, although ancient in origin, many traditional medical paradigm and their pharmacopoeias have evolved into quite sophisticated system using the thousands of plants and their natural system (Rates, 2001). Medicinal plants may form a good source of antimicrobial medications or resistance modifying agents to be discovered. Studies on the antimicrobial properties of

medicinal plant extracts on resistant strains of microorganisms are scanty and only few antimicrobial agents as isolated compounds have been proven to possess inhibitory properties on multi drug resistance microorganisms (Akinyemi *et al.*, 2005). They present a low risk of resistance development to their action because they are complex mixtures, making microbial adaptability very difficult (Daferera *et al.*, 2003).

Plant medicine acts on the body by regulating and balancing its vital processes rather than stopping or combating certain symptoms.

© 2015 GTRP All right Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ((<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1.1 Description of plants Used for the Study

Two plants were selected for this work (*G. kola* and *O. gratissimum*) based on ethnobotanical evidence of the plant in the community. *Garcinia kola* popularly known as “bitter kola” is one of the useful indigenous tree in Nigeria and in West and Central Africa (Ogbulie *et al.*, 2007).

It is known as “Orogbo” in Yoruba land, ‘Namijin-Ogoro’ among the Hausas, ‘Akuilu’ in Igboland. The fruit is drupe, of the size of an apple and covered with rough hairs. The seed is oval in shape, about 3 cm long with a mass of 8g and a thin leathery testa surrounded by the endosperm. The regions of the plant that are of immense medicinal value are the roots, barks, stems, leaves and seeds (Ogbulie *et al.*, 2004). The seeds of *G. kola* have pharmacological uses in the treatment of numerous infections such as bronchitis, hepatitis, liver disorders and stomach upset (Farombi *et al.*, 2005; Meserole, 1999). Moreover, *G. kola* is highly recommended in the treatment of opportunistic diseases caused by HIV and AIDS because of its antiviral, detoxification and cleansing properties (Oguntola, 2008). *G. Kola* extracted with 70% ethanol, water and petroleum ether showed the presence of polyisoprenyl benzophenone (kolanone) in petroleum ether extract, hydroxy biflavonols in the ethyl acetone extract. The main component of *G. kola* that has inhibitory activity against Gram-positive and Gram-negative bacteria is hydroxyl flavonol as assessed by Madubunyi *et al.*, (1995).

The seed is used traditionally in treating cough by grinding the seed and mixing with honey (Adebisi, 2007); it is also used as a purgative, antiparasitic and antimicrobial agent (Ghamba *et al.*, 2012).

Ocimum gratissimum linn (Lamiaceae) is a herbaceous shrub notably found in tropical countries including Nigeria where it is commonly called clove basil, sweet basil, te-abush, scent leaf or fever plant, but it is also popularly known with different local names in Nigeria. Nupe: Tan-motsungi-wawagi, Ebira: Ireru; Hausa: Dai doyatagida; Yoruba: Efirin ajase, Ibo: Nchanwu (Mann *et al.*, 2003). Several ethanobotanical surveys show that *Ocimum gratissimum* was among the plants reported in Nigerian communities to be used traditionally to treat bacterial infections such as enteric diseases viz: Diarrhoea, dysentery and other gastrointestinal infections; upper respiratory tract infections associated with coughing, pneumonia, asthma and bronchitis; urogenital infections including sexually transmitted diseases, skin infections (Dermatitis, eczema, scabies), wounds and ulcers, headache, ophthalmia, insect bites, nasal

bleeding, stroke, measles, paludism and bacterial fevers such as typhoid fever and diabetes including veterinary problems. (Ajibesin *et al.*, 2008). It is also used in the treatment of epilepsy, shigellosis, trypanosomiasis, convulsion, pile and anaemia in Nigeria (Idika, 2008). It is also implicated in the oral hygiene and veterinary in Nigeria.

It is used as a tea leaf for fevers often given to children or a as a bath when boiled in water for febrile patients. It is burned in room to drive away spirits and repel mosquitoes (Oparaocha *et al.*, 2010). The leaves are used in cooking for flavouring sauces, it is strongly fragrant.

It mixes with alcohol in all proportions and contains thymol varying from 32-65%, it is regarded as an anti-septic and the plant is a drug. Its active agent is Eugenol (Pessoa *et al.*, 2002).

Comprehensive biological activities of *O. gratissimum* have been reviewed (Prabhu *et al.*, 2009) and it is associated with antibacterial, antifungal, hypoglycaemic, antipyretic, antioxidant, anti-inflammatory, chemopreventive, antidermatophytic and numerous other pharmacological uses (Egesie *et al.*, 2006).

O. gratissimum acts as a controlling agent for food spoilage and mycotoxin producing fungi, it is used as a relaxant on isolated ileum from guinea pig (Madeira *et al.*, 2002). It's essential oil has insecticidal properties and the main active component is Eugenol reported to be efficient in inhibiting *Haemonchus contortua* (Pessoa *et al.*, 2002).

2. Materials and Methods

2.1 Source of Test Organisms

Clinical isolates of *Pseudomonas aeruginosa* and *Staphylococcus aureus* were obtained from Daughters of Mary Mothers of Mercy laboratory, Ahiaeke in Umuahia. The isolates were re-identified and subcultured on nutrient agar slants and stored at 4°C until needed for analysis.

2.2 Confirmation of Test Organisms

The test organisms *S.aureus* and *P. aeruginosa* collected from the laboratory were tested for viability by re-suscitating them and re-identifying them by biochemical test. *S.aureus* was re-identified using catalase test, and grams staining while *P. aeruginosa* was re-identify

by oxidase test. They were then sub-cultured on a nutrient agar slant and stored at 4°C until needed for analysis as described by Cheesbrough, (2000).

2.3 Identification of Methicillin Resistant *S. aureus* and multi drug resistant *P. aeruginosa*.

Strains of *S. aureus* were subjected to sensitivity test with Oxacillin. Those that were resistant to Oxacillin were selected for the study. For *Pseudomonas aeruginosa*, they were subjected to sensitivity using Zithromax, Ceftriazone, Cefepime, and Levofloxacin. The strains of *P. aeruginosa* that were resistant to these four major drugs were regarded as multi drug resistant *P. aeruginosa* and were used for the study (Dalitha, 2008).

2.4 Sources of Plant Materials

The *Garcinia kola* seeds and the *Ocimum gratissimum* leaves were purchased at Ndioru market in Umuahia. They were purchased fresh and packed in a clean polythene bags and transported to the Department of Plant Science and Biotechnology for identification. The plants were botanically identified by Dr. Omosun Garuba.

2.5 Extraction of plant Material

2.5.1 Ethanolic Extract

The grounded leaves and seeds were weighed. The method described by Akerele *et al*, (2008) was used to extract the bioactive components from the grounded leaves and seeds. 30g of each of the samples (*Garcinia kola* seed and *Ocimum gratissimum* leaves) were steeped in 200ml of 95% ethanol for 24 hours in a sterile conical flask at laboratory temperature and stirred occasionally. The content was filtered after 24 hours using Whatman filter paper and evaporated to dryness at 48°C using a rotaevaporator. (Nennaah and Ahmed, 2011; Akerele *et al*, 2008). The residues were collected and stored in a sterile container until required for use.

2.5.2 Aqueous Extraction (Hot and Cold Water)

30g each of the plants (*Garcinia kola* seed and *Ocimum gratissimum* leaves) were weighed and steeped in 200ml of hot water and cold water respectively for 24 hours, after which both were filtered using Whatman filter paper and evaporated to dryness at 48°C using a rota-evaporator. The residues were collected and stored until required for analysis.

2.6 Extraction of Combined Plant Materials

© 2015 GTRP All right Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ((<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

After incubation, the presence or absence of growth on each tube was rated. The minimum inhibitory concentration was taken as the lowest concentration of the plant extract that inhibited the growth.

2.9 Phytochemical Screening test for the Plant Extracts

A portion of the crude plant extracts of *Ocimum gratissimum* leaves and *Garcinia kola* seeds were subjected to phytochemical screening for identification of various classes of active chemicals constituents such as Tannins, saponins, flavonoids, alkaloids, using methods described by (Amadi *et al.*, 2004).

3. Results and Discussion

The evaluation of the antibacterial properties of the single plant extracts and the synergistic effect of *Garcinia kola* seeds and *Ocimum gratissimum* leaves has shown antibacterial activity against the test organisms (methicillin resistant *Staphylococcus aureus* and multi drug resistant *Pseudomonas aeruginosa*). The antibacterial activity in this study was expressed as a measure of the diameter of the inhibition of growth in millimeters. Table 1 to 3 show the mean zone diameter of inhibition at different concentrations of 50,100 and 150mg/ml for the single plant extracts and combined extracts of *Garcinia kola* seeds and *Ocimum gratissimum* leaves.

A high inhibitory activity for the single plant extracts was obtained from the ethanolic extracts; *P. aeruginosa* had a high zone of inhibition for ethanolic extract at 13.50mm for *O. gratissimum* leaves extract while *S. aureus* gave 13.25mm for ethanolic extract of *G. kola*. The combined extracts gave the highest zones of inhibition both the ethanolic and aqueous extracts (hot and cold water) at different concentrations (50, 100, 150mg/ml). The ethanolic extract of the combined plants had a high zone of inhibition of 18.05mm and 16.45mm for *S. aureus* and *P. aeruginosa* respectively (Table -3).

Table 4 to 9 shows the minimum inhibitory concentrations (MIC) and the minimum bacteriocidal concentrations (MBC) for the aqueous and ethanolic extracts at various concentrations against the test organisms. The minimum inhibitory concentration (MIC) of the aqueous extract of *G. kola* seeds against the isolates were 25mg/ml and MBC value of 50mg/ml for both *P. aeruginosa* and *S. aureus* (Table -4). *P. aeruginosa* and *S. aureus* were killed by the ethanolic extracts at the concentration of 50mg/ml and 25mg/ml respectively (Table -7).

The aqueous extract of *O. gratissimum* leaves had an MIC value of 50 and 25mg/ml for *P. aeruginosa* and *S. aureus* respectively (Table- 5) while the ethanolic extract inhibited the growth of *P. aeruginosa* and *S. aureus* at concentration of 12.5 and 25mg/ml respectively (Table 8).

The combined aqueous and ethanolic extract of *G. kola* seeds and *O. gratissimum* leaves had an MIC value of 12.5mg/ml and MBC value of 25mg/ml for *P. aeruginosa* and *S. aureus* (Table 6 and 9). The phytochemical screening test revealed the presence of Tannins, Saponins, Flavonoids and Alkaloids for *O. gratissimum* leaves and *G. kola* seed (Table 10).

4.Discussion

This study reveals that the combined and single plant extracts of *O. gratissimum* leaves and *G. kola* seeds possess antibacterial activities at varying concentrations against the clinical isolates (methicillin resistant *S. aureus* and multi-drug resistant *P. aeruginosa*) indicating their broad spectrum activity (Bankole, 1995). The ethanolic and aqueous extracts of *G. kola* seeds was active against *S. aureus* and *P. aeruginosa*. This is similar to the work of Ogueke *et al.*, (2006) which showed that ethanolic and aqueous extracts of *G. kola* seeds exhibited antibacterial activities against both Gram-positive and Gram-negative organisms. Muanya (2008) also identified *G. kola* to have strong antibiotic activities and found the plant to be very effective against disease-causing microorganisms such as *E. coli*, *S. aureus*, *P. aeruginosa*, *Salmonella specie*, etc. *P. aeruginosa* and *S. aureus* was found to be sensitive to the ethanolic and aqueous extracts of *O. gratissimum* leaves. This finding justifies the ethnomedical use of this plant in the treatment of wounds of which *P. aeruginosa* and *S. aureus* have been highly incriminated.

The combined extracts of *G. kola* seeds and *O. gratissimum* leaves produce greater zones of inhibition against the test organisms (MRSA and MDRPA) than *G. kola* seeds and *O. gratissimum* leaves separately as shown in table 3. This could be attributed to the additive effect of the active components present in these plants which is in agreement with Onwuakor and Ukaegbu-Obi (2014).

The phytochemical screening tests of the plant extracts were also determined in this study. The *G. kola* seeds and *O. gratissimum* leaves revealed the presence of Tannins, Saponins, Flavonoids and Alkaloids (Table 10). The significant roles these phytochemical compounds play in the antibacterial activity lies on their

Table -1: Antibacterial activity of *Garcinia kola* seeds extract on clinical isolates

Isolates	Concentration(mg/ml)	Mean zone diameter of inhibition (mm)		
		Hw	Cw	Eth
<i>P. aeruginosa</i>	50	10.33	9.33	10.36
	100	11.40	10.40	11.50
	150	12.02	12.32	13.38
<i>S. aureus</i>	50	11.40	10.50	10.59
	100	12.00	12.30	11.50
	150	13.14	12.50	13.25

Key: HW – Hot water extract; CW – Cold water extract, Eth – Ethanolic extract

Table -2: Antibacterial activity of *Ocimum gratissimum* leaves extract on clinical isolates

Isolates	Concentration(mg/ml)	Mean zone diameter of inhibition (mm)		
		Hw	Cw	Eth
<i>P. aeruginosa</i>	50	10.50	9.50	10.60
	100	12.32	10.90	12.70
	150	13.01	12.45	13.50
<i>S. aureus</i>	50	10.23	9.20	10.45
	100	11.50	10.20	11.50
	150	12.00	12.05	13.15

Key: HW – Hot water extract; CW – Cold water extract, Eth – Ethanolic extract

Table - 3: Antibacterial activity of combined extracts of *Ocimum gratissimum* leaves and *Garcinia kola* seeds on clinical isolates

Isolates	Concentration(mg/ml)	Mean zone diameter of inhibition (mm)		
		Hw	Cw	Eth
<i>P. aeruginosa</i>	50	13.50	12.25	13.50
	100	14.40	13.30	14.03
	150	16.40	15.20	16.45
<i>S. aureus</i>	50	13.19	13.80	13.70
	100	13.56	14.30	14.25
	150	15.50	15.04	18.05

Key: HW – Combined (Hot water extract), CW – Combined (Cold water extract), Eth-(Combined Ethanolic extract).

Table - 4: Minimum Inhibitory concentration and Bacteriocidal concentration of aqueous extracts of *Garcinia kola* seeds on *S. aureus* and *P. aeruginosa*

Isolates	Concentration (mg/ml)	Turbidity	Growth on plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-		50
	25	-	+	25	
	12.5	+			
<i>S. aureus</i>	6.25	+			
	100	-	-		
	50	-	-		50
	25	-	+	25	
	12.5	+			
	6.25	+			

Key: - No growth + Growth

© 2015 GTRP All right Reserved. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by-nd/3.0/>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 5: Minimum Inhibitory concentration and Bacteriocidal concentration of aqueous extracts of *Ocimum gratissimum* leaves on *S. aureus* and *P. aerugionsa*

Isolates	Concentration (mg/ml)	Turbidity	Growth on plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-	50	50
	25	+			
	12.5	+			
	6.25	+			
<i>S. aureus</i>	100	-	-		
	50	-	-		50
	25	+	+	25	
	12.5	+			
	6.25	+			

Key: - No growth + Growth

Table 6: Minimum Inhibitory concentration and Bacteriocidal concentration of combined aqueous extracts of *Garcinia kola* seeds and *Ocimum gratissimum* leaves on *P. aeruginosa* and *S. aureus*

Isolates	Concentration (mg/ml)	Turbidity	Growth on plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-		
	25	-	-		25
	12.5	-	+	12.5	
	6.25	+			
<i>S. aureus</i>	100	-	-		
	50	-	-		
	25	-	-		25
	12.5	-	+	12.5	
	6.25	+			

Key: - No growth + Growth

Table 7: Minimum Inhibitory concentration and Bacteriocidal concentration of ethanolic extracts of *Garcinia kola* seeds on *S. aureus* and *P. aeruginosa*

Isolates	Concentration (mg/ml)	Turbidity	Growth on Plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-		50
	25	-	+	25	
	12.5	+			
	6.25	+			
<i>S. aureus</i>	100	-	-		
	50	-	-		
	25	-	-		25
	12.5	-	+	12.5	
	6.25	+			

Key: -No growth + Growth

Table -8: Minimum Inhibitory concentration and Bacteriocidal concentration of Ethanolic extracts of *Ocimum gratissimum* leaves on *P. aeruginosa* and *S. aureus*

Isolates	Concentration (mg/ml)	Turbidity	Growth on Plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-		
	25	-	-		
	12.5	-	+	12.5	
	6.25	+			25
<i>S. aureus</i>	100	-	-		
	50	-	-		
	25	-	+	25	
	12.5	+			
	6.25	+			50

Key: -No growth + Growth

Table -9: Minimum Inhibitory concentration and Bacteriocidal concentration of combined ethanolic extracts of *Garcinia kola* seeds and *Ocimum gratissimum* leaves on *P. aeruginosa* and *S. aureus*

Isolates	Concentration (mg/ml)	Turbidity	Growth on Plate	MIC (mg/ml)	MBC (mg/ml)
<i>P. aeruginosa</i>	100	-	-		
	50	-	-		
	25	-	-		
	12.5	-	+	12.5	
	6.25	+			25
<i>S. aureus</i>	100	-	-		
	50	-	-		
	25	-	-		
	12.5	-	+	12.5	
	6.25	+			25

Key: - No growth + Growth

Table -10: Phytochemical Screening Test of *Ocimum gratissimum* and *Garcinia kola*

Bioactive Components	<i>Ocimum gratissimum</i>	<i>Garcinia kola</i>
Tannins	+	+
Saponins	+	+
Flavonoids	+	+
Alkaloids	+	+

ability to produce a definite and specific action on the human body (Adegboye *et al.*, 2008). The significant activities of both plants observed in this study could thus be attributed to the interaction of one or more of the identified phytochemical compounds against the test organisms.

Conclusion

This research work have shown that the single extracts of *Garcinia kola* seeds and *Ocimum gratissimum* leaves have antibacterial activity against methicillin resistant *Staphylococcus aureus* and multi-drug resistant *Pseudomonas aeruginosa* but their activities were more better when combined than when used singly. This therefore suggest for the possible exploration of these plants as sources of natural product for future use in the management of multi-drug resistant pathogens such as *P.aerugionosa* and *S.aureus* that cause wide range of infections.

5. References

- Adebisi, A. A. 2007. Bitter kola: the African wonder nut <http://www.citor.cigar.org/publications/pdf-files/books/Restution-Africa-case/NTFP-Africa-case-part2.pdf>.
- Adegboye, M. F., Akinpelu, D.A. and Okoli, A. L. 2008. The bioactive and phytochemical properties of *Garcinia kola* (Heckel) seed extract on some pathogens. *African Journal of Biotechnology*, 7(21): 3938 - 3938.
- Ajibesin, K. K., Ekpo, B. E., Bala, D. N., Essien, E.E., and Adesanya, S.A. 2008. Ethnobotanical Survey of Akwa Ibom State of Nigeria. *Journal Ethnopharmacology*, 115:387-408.
- Akerele, J. O., Obasayi, O.; Ebomoyi, M. I., Oboh, I.E. and Uwumarongic, O. H. 2008. Antimicrobial activity of ethanol extracts and fractions of the seeds of *Garcinia kola* Hackel (Gutiferae) *African Journal of Biotechnology*, 7(2): 169-172.
- Akinyemi, K. O., Oladapo, O., Okwara, C.E., Ibe, C.C. and Fasure, K. A. 2005. Screening of Crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant *Saphylococcus aureus* activity. *BMC Complementary Alternative Medicine*, 5, 6-10.
- Amadi, B. A.; Agomuo, E. N. and Ibegbulam, C. O. 2004. Phytochemical tests: *Research Methods in Biochemistry*. Supreme Publishers Owerri, 89-95.
- Bankole, A. A. 1992. The antibacterial activity of the crude seed extracts of three plants used in Nigeria ethnomedicine. University of Benin, Benin City, 45-46.
- Cheesbrough, M. 2000. *District Laboratory practical in tropical countries*. Cambridge University Press. 155 -168.
- Daferera, D. J., Ziogas, B. N. and Polissiou, M.G. 2003. The effectiveness of plant essential oils on the growth of *Botrytis cinerea*, *Fusarium* specie and *Clari-bacter michiganensis* subspecie. Michiganensis. *Crop Protection*, 22:39-44.
- Dalitha, M. K. 2008. Antimicrobial susceptibility testing. *Indian Association of Medical Microbiologists*, 10 -21.
- Egesie, U. G., Adelaiyi, A. B., Ibu, J. O. and Egesie, O. J. 2006. Safety and hypoglycaemic properties of aqueous leaf extract of *Ocimum gratissimum* in streptozotocin induced diabetic rats. *Nigeria of Journal Physiological Science*, 21(1-2).
- Farombi, E.O., Adepisu, B. F., Oladeries, O. E. and Emerole, C. O. 2005. Chemoprevention of Aflatoxin B induced genotoxicity and hepatic oxidative damage rats by kola viron a natural biflavonoids of *Garcinia kola* seed. *Environmental Cancer Prevention, African Journal of Medicine*,(1): 230-234.
- Ghamba, P.E., Agbo, E.B., Umar, A.F., Bukbuk, D.N. and Goje, L.J. 2012. *In Vitro* antibacterial activity of crude ethanol, acetone and aqueous *Garcinia kola* seed extracts on selected clinical isolates. *African Journal of Biotechnology*, 11(6):1478-1483.
- Idika, N. 2008. A textbook of Medicinal Plants. The diversity of uses of Medicinal plants in Nigeria.
- Madeira, S. V. F.; Matos, F. J. A.; Leal-Cardoso, J. H.; and Criddle, D. N. 2002. Relaxant effects of the essential oil of *Ocimum gratissimum* on isolated ileum of the guinea pig. *Journal of Ethnopharmacology*, 81(1): 1 -4.
- Madubunyi, I. I. 1995. Antimicrobial activities of the constituents of *Garcinia kola* seeds. *International Journal of Pharmacology*, 33:232-237.
- Mann, A. M; Gbate, B. C. and Nda-Umar, A. 2003. *Medicinal and Economic Plants of Nupe land*, Jube-Evans Books and Publications, Bida, Niger State, Nigeria. 63-70.

- Meserole, L. 1999. *Garcinia kola* in clinical therapeutics present and potential indications as a toxic. *Garcinia kola Book of the International conference on Ethnomedicine and drug discovery. Maryland, USA*, 3-5.
- Muanya, C. 2008. Nigerian researchers universal/potent herbal antibiotics. *Natural Health Articles*, (1) :24-25.
- Nenaah, E. G. and Ahmed, M. E. 2011. Antimicrobial Activity of Effects and Latex of *Caiotropis procera* (Ait) and synergistic Effect with Reference Antimicrobials Research. *Journal of Medicinal Plant*, 5(6): 706-716.
- Ogbulie, J. N., Ogueke, C. C. and Nwanebu, F. C. 2007. Antibacterial properties of *Uvaria chaemea*, *Congronema latifolium*, *Garcinia kola*, *Veronica amygdalina* and *Aframomium melegueta*. *Africa Science Biotechnology*, 6(13): 1549-1553.
- Ogbulie, J.N., Ogueke, C.C. and Okoronda, S. 2004. Antibacterial properties of *A. corditola*, *M. flurum*, *U. chaemae*, *B. pinnatum*, *C. albidem* and *A. cliata* on some hospital isolates. *Niger S. Microbial*. 18(1-2): 255-269.
- Ogueke, C.C., Ogbulie, J.N. and Nsoka, H.O. 2006. Antibacterial properties and preliminary phytochemical analysis of ethanolic extracts of *Aistonia bonnie*. *Niger S. Microbial.*, 20(2): 896-899.
- Oguntola, S. 2008. How bitter kola can improve your health. *Niger Tribun Health LHPWWW. Tribune*. Ng/030/2008.LH2LFML. Retrieved on 5th March, 2008.
- Onwuakor, C.E and Ukaegbu-Obi, K.M. 2014. Synergistic Bio-preservative effects of *Vernonia amygdalina* leaves and *Sacoglottis gabonensis* stem bark on palm wine from *Eliae guineensis* and *Raphia hookeri* from Uturu, Nigeria. *American Journal Microbiological of Reseaerch*, 2(3):105-109.
- Oparaocha, E. T.; Iwu, I. and Ahanaku, J. E. 2010. Preliminary study on mosquito repellent and mosquitocidal activities of *Ocimum gratissimum* (L.) grown in eastern Nigeria. *Journal Vector Borne Disease*, 45-50.
- Pessoa, L. M., Morais, S. M., Berilagus, C. M. and Luciano, J. H. 2002. Antihelmintic activity of essential oil of *Ocimum gratissimum* Linn and eugenol against *Haemonchus contortus*. *Veterinary Parasitology*, 109(1-2): 59-63.